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Self-organization without ‘blueprints’

Figure: Self-organization in physical systems: Vortexes are chiral structures
spontaneously created without programs.
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Basic mechanisms of self-organization

Nontrivial ‘energy’ → nontrivial structure

Nontrivial ‘space’: Topological constraints → ‘effective energy’

Casimir invariants → foliation of phase space
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The simplest example of micro=canonical mechanics:
pendulum

Zensho Yoshida (U. Tokyo) structures 2017/03/13 4 / 26



The simplest example of micro=canonical mechanics:
pendulum

Zensho Yoshida (U. Tokyo) structures 2017/03/13 4 / 26



The simplest example of micro=canonical mechanics:
pendulum

Zensho Yoshida (U. Tokyo) structures 2017/03/13 4 / 26



Other possibilities of spaces
Bianchi classification of 3D Lie algebras
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Foliated phase space →

Figure: The energy (Hamiltonian) may have a nontrivial distribution on each leaf
of the foliated phase space.
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Basic Formulation

Hamiltonian system:
∂tu = J∂uH

with state vector u ∈ X (phase space), Poisson operator J defining a
Poisson bracket

{F ,G} = 〈∂uF , J∂uG 〉,

and a Hamiltonian H ∈ C∞{ , }(X ) (Poisson algebra).

The adjoint representation:

d

dt
F = {F ,H} = −adHF .

Canonical system: J =

(
0 I
−I 0

)
→ symplectic geometry

Noncanonical system has topological defects: Ker(J) = Coker(J).

Casimir invariant: J∂uC = 0, i.e., Ker(J) 3 v = ∂uC .
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The origin of Casimir invariant (a tutorial example) (1)

Let us start with a 6-dimensional phase space:

z := (q1, q2, q3, p1, p2, p3)T ∈ Xz = R6, (1)

on which we define a canonical Poisson bracket

{F ,G}z := (∂zF , Jz∂zG ) (2)

Jz = Jc :=

(
0 I
−I 0

)
. (3)

Denoting q = (q1, q2, q3)T and p = (p1, p2, p3)T , we define

ω := q × p ∈ Xω. (4)

We reduce C∞(Xz) to C∞(Xω):

{F (q × p),G (q × p)}z = {F (ω),G (ω)}ω
:= (∂ωF , (−ω)× ∂ωG ). (5)
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The origin of Casimir invariant (a tutorial example) (2)

Denoting

Jω =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 , (6)

we may write

{F (ω),G (ω)}ω := (∂ωF , Jω∂ωG ), (7)

which is the so(3) Lie-Poisson bracket.

The reduced Poisson algebra, to be denoted by C∞{ , }ω(Xω), is
noncanonical, having a Casimir invariant

C =
1

2
|ω|2. (8)

Physically, Xω is the phase space of a rigid-body on an inertia frame
co-moving with the center of mass. The mechanical degree of
freedom is, then, only the angular momentum ω; the phase space Xω

may be identified with so(3).
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Vortex dynamics (1)
Clebsch reduction

Vortex dynamics is as an infinite-dimensional generalization of the
aforementioned so(3) noncanonical Lie-Poisson system.

Let Z = (Q(x),P(x))T ∈ XZ be a 2-component field on a base
manifold T 2, on which we define a canonical Poisson bracket

{F ,G}Z := (∂ZF , Jc∂ZG ), Jc :=

(
0 I
−I 0

)
.

We define
ω = [Q,P] := dQ ∧ dP ∈ Xω,

and reduce C∞(XZ ) to C∞(Xω):

{F ([Q,P]),G ([Q,P])}Z{F (ω),G (ω)}ω = (∂ωF , [ω, ∂ωG ])

:= (∂ωF , Jω∂ωG ).
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Vortex dynamics (2)
Hamiltonian and Casimir

We write the vorticity ω = −∆ϕ with the Gauss potential ϕ (∆ is the
Laplacian). Then, V = t(∂yϕ,−∂xϕ).

Given a Hamiltonian

HE(ω) = −1

2

∫
ω · (∆−1ω)d2x ,

Hamilton’s equation ∂tω = J∂ωHE reproduces the vortex equation for
Eulerian flow,

∂tω + V · ∇ω = 0.

The reduced bracket { , }ω has a Casimir = enstrophy:

C =

∫
f (ω) d2x .
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Topological constraints in ideal MHD (1)
Näıve formulation

We consider a barotropic MHD:

∂tρ = −∇ · (V ρ),

∂tV = −(∇× V )× V −∇(h + V 2/2) + ρ−1(∇× B)× B,
∂tB = ∇× (V × B).

The local magnetic flux on an arbitrary co-moving surface σ(t)

Φσ(t) =

∫
σ(t)

ν · B d2x =

∮
∂σ(t)

τ · A dx

is a constant of motion.

Because of this infinite set of conservation laws, the magnetic field
lines are forbidden to change their topology.
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Topological constraints in ideal MHD (2)
Hamiltonian structure and Casimirs

The phase space X contains the state vector u = (ρ,V ,B)T , and the
Hamiltonian and Poisson operator are given as follows:

H =

∫
Ω

{
ρ

[
V 2

2
+ E(ρ)

]
+

B2

2

}
d3x , (9)

J =

(
0 −∇· 0
−∇ −ρ−1(∇× V )× ρ−1(∇× ◦)× B

0 ∇×
(
◦ × ρ−1B

)
0

)
. (10)

The Poisson operator J has well-known Casimir invariants:

C1 =

∫
Ω
ρd3x ,

C2 =
1

2

∫
Ω

A · B d3x ,

C3 =

∫
Ω

V · B d3x ,
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Topological constraints in ideal MHD (3)
Structures created on Casimir leaves: Beltrami fields (Taylor relaxed states:)

The magnetic helicity C2 is a robust constant; hence the plasma
relaxes into the minimum energy state under the constraint on C2.

The minimizer is called the Taylor relaxed state.

The variational principle of minimizing Hµ := H − µC3 yields

∇× B = µB.

For the existence of solutions, see Y & Giga,, Math. Z. 204 (1990),
235-245.

Let uµ be the equilibrium point of Hµ, and approximate
Hµ(uµ + ũ) ≈ Hµ(uµ) + 1

2〈Hµũ, ũ〉 with a linear operator Hµ. If

c‖ũ‖2 ≤ 〈Hµũ, ũ〉

holds 〈Hµũ, ũ〉 plays the role of Lyapunov function

Problem: What is Hµ? What is the condition on µ for the stability?
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Topological constraints in ideal MHD (3-2)
Structures created on Casimir leaves: Beltrami fields (Taylor relaxed states:)

Figure: Bifurcation of Taylor relaxed states (the figures plot the magnetic
surfaces). The helicity C2 plays the role of a bifurcation parameter.

Y & R. L. Dewar; J. Phys. A: Math. Theor. 45 (2012), 365502 (36pp).
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Topological constraints in ideal MHD (4)
Structures created on Casimir leaves: Alfvén waves

The stationary point of H − µC1 − λC3 is given by ρV = λB,
B = λV , and Bernoulli’s relation ρV 2/2 + h(ρ) = µ.
Nontrivial solutions are given by λ2 = 1, ρ = 1, and

V = ±B. |V | = constant. (11)

Putting (with B0 = constant)

B = B0 + b, V = ±B0 + v ,

and boosting x → x ∓ B0t, the wave component satisfies

∂tv = −(∇× v)× v + (∇× b)× (b + B0)−∇(V 2/2 + h),

∂tb = ∇× [v × (b + B0)],

The determining equations (11) have a large set of exact nonlinear
solutions, implying that Alfvén waves, propagating on a homogeneous
ambient field, have a large degree of freedom; arbitrarily shaped
waves propagate keeping the wave forms.
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Conclusion

1 Emergence of nontrivial structures
← Nontrivial ‘effective energy’

← Topological constraints = Phase space foliation

2 Casimir invariants (helicity, etc.) foliates the phase space

3 Examples of ‘structures’ in plasmas:
Beltrami vortexes (Taylor relaxed sate, flux rope, etc.)
Alfvén waves

Questions:

1 What is the ‘origin’ of the Casimirs?

2 How about the local constraints?
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The origin of Casimirs

Theoretically, a constant of motion is a reflection of some symmetry.

What is the symmetry that generates a Casimir?

The constancy of the Casimir is independent of the Hamiltonian.
Hence, it is conceivable that the Casimir pertains to some gauge
symmetry.

There must be some fundamental canonical system beneath the MHD
system, and the MHD system is its reduction. The Casimir is, then,
the Noether charge of the gauge transformation pertinent to the
redundancy.
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‘idea’ (eidos): theoretical consideration

Physical systems are the realizations of some (Lie) algebra.

Here we explore possible realizations of the Heisenberg algebra:

[pj , qk ] = cδjk ⇒


{F ,G} = (z , [∂zF , ∂zG ])

[p̌j , q̌k ] = 1
i~δjk

Clebsch field [pj(x), qk(y)] = δjkδ(x − y)

⇒


{F ,G}f = (∂uF , J∂uG ) : Classical fluid systems

[ψj(x), ψ∗k(y)] = 1
i~δjkδ(x − y) : Quantum field systems
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Classical realization as an Eulerian flow (I)

Phase space Z (x) = (q0(x), q1(x), · · · , p0(x), p1(x), · · · ) ∈ X .

Canonical Poisson algebra on C∞(X ) with

{F ,G}c = (Z , [∂ZF , ∂ZG ]) = (∂ZF , Jc∂ZG ), Jc =

(
0 I
−I 0

)

The Clebsch reduction to the fluid variables:

u = (ρ,V ),

{
ρ = p0

V = 1
p0

(p0dq0 + p1dq1 + · · · )

yields a non-canonical Poisson system with

{F (u(Z )),G (u(Z ))}c = {F (u),G (u)}f = (∂ZF , Jf ∂ZG ),

Jf =

(
0 −∇·
−∇ −ρ−1(∇× V )×

)
.
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Classical realization as an Eulerian flow (II)

With a Hamiltonian (conventional fluid energy)

Hc =

∫ [
|V |2

2
+ U(ρ)

]
ρ dx ,

the Hamilton’s equation u̇ = Jf ∂uHc reads as the classical system of
ideal fluid:

∂tρ+∇ · (V ρ) = 0,

∂tV + (V · ∇)V = −ρ−1∇P,

The noncanonical bracket { , }f has Casimirs:

C1 =

∫
Ω
ρd3x ,

C2 =
1

2

∫
Ω

V · (∇× V ) d3x .
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Classical realization as an MHD plasma (I)

The phase space:

Z (x) = (q0, q1, · · · , s1, · · · ; p0, p1, · · · , r1, · · · ) ∈ X .

Canonical Poisson algebra with {F ,G}c = (Z , [∂ZF , ∂ZG ]).

The Clebsch reduction to the MHD field:

u = (ρ,V ,B),


ρ = p0

V = 1
p0

[p0dq0 + p1dq1 + · · · − (r1ds1 · · · )]

B = d
(
p1
p0

)
∧ ds1 + · · ·

yields a non-canonical Poisson system with

{F (u(Z )),G (u(Z ))}c = {F (u),G (u)}f = (∂ZF , JMHD∂ZG ),

JMHD =

 0 −∇· 0
−∇ −ρ−1(∇× V )× ρ−1(∇× ◦)× B

0 ∇× (◦ × ρ−1B) 0

 .
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Topological constraints in ideal MHD (continued)
Extension of the phase space

To formulate the local magnetic flux as a Casimir invariant, we extend the
phase space in order to include topological indexes information in the set
of dynamical variables.
Adding a 2-form B̌, which we call a phantom field, to the MHD variables,
gives the extended phase space state vector

ũ = (ρ,V ,B, B̌)T , (12)

on which we define a degenerate Poisson manifold by

J̃ =

 0 −∇· 0 0
−∇ −ρ−1(∇× V )× ρ−1(∇× ◦)× B ρ−1(∇× ◦)× B̌

0 ∇×
(
◦ × ρ−1B

)
0 0

0 ∇×
(
◦ × ρ−1B̌

)
0 0

. (13)

Using the same Hamiltonian (9), we obtain an extended dynamics
governed by exactly the same MHD equations together with an additional
equation ∂tB̌ = ∇× (V × B̌).
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Topological constraints in ideal MHD (continued)
Circulation theorem represented by the Casimirs of the extended system

The extended Poisson operator (13) has the set of Casimir invariants
composed of C1, C2, and a new cross helicity

C4 =

∫
Ω

A · B̌ d3x ,

as well as a phantom magnetic helicity

C5 =
1

2

∫
Ω

Ǎ · B̌ d3x .

Interestingly, the original (standard) cross helicity C3 =
∫

Ω V · B d3x
is no longer a Casimir invariant of the extended system, although it is
still a constant of motion. The constancy of C3 is now due to the
“symmetry” of a Hamiltonian with ignorable dependence on the
phantom field B̌;
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Conclusion (2)

1 Beneath various fluid systems (e.g. Eulerian fluid, MHD, etc.) is the
canonical Lie-Poisson system of classical fields which is a realization
of the Heisenberg algebra.

2 Variety of foliated phase spaces, on which nontrivial effective energies
generate interesting structures, are derived by the Clebsch reduction.

3 The Casimir invariants of the fluid systems are the Noether charges;
the co-adjoint group action generated by the Casimir represents the
gauge symmetry.
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