Topological constraints generating structures

Zensho Yoshida

U. Tokyo

2017.3.13

Self-organization without 'blueprints'

Figure: Self-organization in physical systems: Vortexes are chiral structures spontaneously created without *programs*.

Basic mechanisms of self-organization

 $\bullet~$ Nontrivial 'energy' $\rightarrow~$ nontrivial structure

Basic mechanisms of self-organization

- $\bullet~$ Nontrivial 'energy' $\rightarrow~$ nontrivial structure
- Nontrivial 'space': Topological constraints \rightarrow 'effective energy'

- $\bullet~\mbox{Nontrivial}$ 'energy' $\rightarrow~\mbox{nontrivial}$ structure
- \bullet Nontrivial 'space': Topological constraints \rightarrow 'effective energy'
- $\bullet~\mbox{Casimir invariants} \rightarrow \mbox{foliation of phase space}$

The simplest example of micro=canonical mechanics: pendulum

The simplest example of micro=canonical mechanics: pendulum

The simplest example of micro=canonical mechanics: pendulum

Other possibilities of spaces

Bianchi classification of 3D Lie algebras

Foliated phase space \rightarrow

Figure: The energy (Hamiltonian) may have a nontrivial distribution on each leaf of the foliated phase space.

• Hamiltonian system:

$$\partial_t u = J \partial_u H$$

with state vector $u \in X$ (phase space), Poisson operator J defining a Poisson bracket

$$\{F,G\}=\langle\partial_u F,J\partial_u G\rangle,$$

and a Hamiltonian $H \in C^{\infty}_{\{,,\}}(X)$ (Poisson algebra).

The adjoint representation:

$$\frac{d}{dt}F = \{F, H\} = -\mathrm{ad}_HF.$$

- Canonical system: $J = \begin{pmatrix} 0 & l \\ -l & 0 \end{pmatrix} \rightarrow$ symplectic geometry
- Noncanonical system has topological defects: Ker(J) = Coker(J).
- Casimir invariant: $J\partial_u C = 0$, i.e., $\operatorname{Ker}(J) \ni v = \partial_u C$.

The origin of Casimir invariant (a tutorial example) (1)

• Let us start with a 6-dimensional phase space:

$$\mathbf{z} := (q_1, q_2, q_3, p_1, p_2, p_3)^T \in X_{\mathbf{z}} = \mathbb{R}^6,$$
 (1)

on which we define a canonical Poisson bracket

$$\{F,G\}_{z} := (\partial_{z}F, J_{z}\partial_{z}G)$$
(2)

$$J_{\mathbf{z}} = J_{\mathbf{c}} := \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$
(3)

• Denoting $\boldsymbol{q} = (q_1, q_2, q_3)^T$ and $\boldsymbol{p} = (p_1, p_2, p_3)^T$, we define

$$\boldsymbol{\omega} := \boldsymbol{q} \times \boldsymbol{p} \in X_{\boldsymbol{\omega}}. \tag{4}$$

We reduce $C^{\infty}(X_z)$ to $C^{\infty}(X_{\omega})$:

$$\{F(\boldsymbol{q} \times \boldsymbol{p}), G(\boldsymbol{q} \times \boldsymbol{p})\}_{\boldsymbol{z}} = \{F(\boldsymbol{\omega}), G(\boldsymbol{\omega})\}_{\boldsymbol{\omega}} \\ := (\partial_{\boldsymbol{\omega}}F, (-\boldsymbol{\omega}) \times \partial_{\boldsymbol{\omega}}G).$$
(5)

The origin of Casimir invariant (a tutorial example) (2)

Denoting

$$J_{\boldsymbol{\omega}} = \begin{pmatrix} 0 & \omega_3 & -\omega_2 \\ -\omega_3 & 0 & \omega_1 \\ \omega_2 & -\omega_1 & 0 \end{pmatrix}, \tag{6}$$

we may write

$$\{F(\boldsymbol{\omega}), G(\boldsymbol{\omega})\}_{\boldsymbol{\omega}} := (\partial_{\boldsymbol{\omega}} F, J_{\boldsymbol{\omega}} \partial_{\boldsymbol{\omega}} G), \tag{7}$$

which is the $\mathfrak{so}(3)$ Lie-Poisson bracket.

• The reduced Poisson algebra, to be denoted by $C^{\infty}_{\{\ ,\ \}_{\omega}}(X_{\omega})$, is noncanonical, having a Casimir invariant

$$C = \frac{1}{2} |\boldsymbol{\omega}|^2. \tag{8}$$

 Physically, X_ω is the phase space of a rigid-body on an inertia frame co-moving with the center of mass. The mechanical degree of freedom is, then, only the angular momentum ω; the phase space X_ω may be identified with so(3).

Vortex dynamics (1) Clebsch reduction

- Vortex dynamics is as an infinite-dimensional generalization of the aforementioned $\mathfrak{so}(3)$ noncanonical Lie-Poisson system.
- Let $\mathbf{Z} = (Q(\mathbf{x}), P(\mathbf{x}))^T \in X_{\mathbf{Z}}$ be a 2-component field on a base manifold T^2 , on which we define a canonical Poisson bracket

$$\{F,G\}_{\mathbf{Z}} := (\partial_{\mathbf{Z}}F, J_c\partial_{\mathbf{Z}}G), \quad J_c := \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$

We define

$$\boldsymbol{\omega} = [\boldsymbol{Q}, \boldsymbol{P}] := \mathrm{d}\boldsymbol{Q} \wedge \mathrm{d}\boldsymbol{P} \in \boldsymbol{X}_{\boldsymbol{\omega}},$$

and reduce $C^{\infty}(X_{Z})$ to $C^{\infty}(X_{\omega})$:

$$\{F([Q,P]), G([Q,P])\}_{\mathbb{Z}}\{F(\omega), G(\omega)\}_{\omega} = (\partial_{\omega}F, [\omega, \partial_{\omega}G])$$

:= $(\partial_{\omega}F, J_{\omega}\partial_{\omega}G).$

Vortex dynamics (2) Hamiltonian and Casimir

- We write the vorticity ω = −Δφ with the Gauss potential φ (Δ is the Laplacian). Then, V = ^t(∂_yφ, −∂_xφ).
- Given a Hamiltonian

$$\mathcal{H}_{\mathrm{E}}(\omega) = -rac{1}{2}\int\,\omega\cdot(\Delta^{-1}\omega)\mathrm{d}^2x,$$

Hamilton's equation $\partial_t \omega = J \partial_\omega H_{\rm E}$ reproduces the vortex equation for Eulerian flow,

$$\partial_t \omega + \boldsymbol{V} \cdot \nabla \omega = 0.$$

 \bullet The reduced bracket $\{\ ,\ \}_{\omega}$ has a Casimir = enstrophy:

$$C = \int f(\omega) \, \mathrm{d}^2 x.$$

Topological constraints in ideal MHD (1) Naïve formulation

• We consider a barotropic MHD:

$$\begin{split} \partial_t \rho &= -\nabla \cdot (\boldsymbol{V}\rho), \\ \partial_t \boldsymbol{V} &= -(\nabla \times \boldsymbol{V}) \times \boldsymbol{V} - \nabla (h + V^2/2) + \rho^{-1} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B}, \\ \partial_t \boldsymbol{B} &= \nabla \times (\boldsymbol{V} \times \boldsymbol{B}). \end{split}$$

• The local magnetic flux on an arbitrary co-moving surface $\sigma(t)$

$$\Phi_{\sigma}(t) = \int_{\sigma(t)} \boldsymbol{\nu} \cdot \boldsymbol{B} \, \mathrm{d}^2 \boldsymbol{x} = \oint_{\partial \sigma(t)} \boldsymbol{\tau} \cdot \boldsymbol{A} \, \mathrm{d} \boldsymbol{x}$$

is a constant of motion.

• Because of this infinite set of conservation laws, the magnetic field lines are forbidden to change their topology.

Topological constraints in ideal MHD (2)

Hamiltonian structure and Casimirs

The phase space X contains the state vector $\boldsymbol{u} = (\rho, \boldsymbol{V}, \boldsymbol{B})^T$, and the Hamiltonian and Poisson operator are given as follows:

$$H = \int_{\Omega} \left\{ \rho \left[\frac{V^2}{2} + \mathcal{E}(\rho) \right] + \frac{B^2}{2} \right\} d^3x, \qquad (9)$$

$$\mathcal{J} = \begin{pmatrix} 0 & -\nabla \cdot & 0 \\ -\nabla & -\rho^{-1} (\nabla \times \mathbf{V}) \times & \rho^{-1} (\nabla \times \circ) \times \mathbf{B} \\ 0 & \nabla \times (\circ \times \rho^{-1} \mathbf{B}) & 0 \end{pmatrix}. \qquad (10)$$

The Poisson operator ${\mathcal J}$ has well-known Casimir invariants:

$$\begin{split} C_1 &= \int_{\Omega} \rho \, \mathrm{d}^3 x, \\ C_2 &= \frac{1}{2} \int_{\Omega} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}^3 x, \\ C_3 &= \int_{\Omega} \boldsymbol{V} \cdot \boldsymbol{B} \, \mathrm{d}^3 x, \end{split}$$

Topological constraints in ideal MHD (3)

Structures created on Casimir leaves: Beltrami fields (Taylor relaxed states:)

- The magnetic helicity C₂ is a *robust* constant; hence the plasma relaxes into the minimum energy state under the constraint on C₂.
- The minimizer is called the Taylor relaxed state.
- The variational principle of minimizing $H_{\mu} := H \mu C_3$ yields

$$\nabla \times \boldsymbol{B} = \mu \boldsymbol{B}.$$

For the existence of solutions, see Y & Giga,, Math. Z. **204** (1990), 235-245.

• Let u_{μ} be the equilibrium point of H_{μ} , and approximate $H_{\mu}(u_{\mu} + \tilde{u}) \approx H_{\mu}(u_{\mu}) + \frac{1}{2} \langle \mathcal{H}_{\mu}\tilde{u}, \tilde{u} \rangle$ with a linear operator \mathcal{H}_{μ} . If $c \|\tilde{u}\|^2 \leq \langle \mathcal{H}_{\mu}\tilde{u}, \tilde{u} \rangle$

holds $\langle \mathcal{H}_{\mu}\tilde{u},\tilde{u}\rangle$ plays the role of Lyapunov function

Topological constraints in ideal MHD (3)

Structures created on Casimir leaves: Beltrami fields (Taylor relaxed states:)

- The magnetic helicity C_2 is a *robust* constant; hence the plasma relaxes into the minimum energy state under the constraint on C_2 .
- The minimizer is called the Taylor relaxed state.
- The variational principle of minimizing $H_{\mu} := H \mu C_3$ yields

$$\nabla \times \boldsymbol{B} = \mu \boldsymbol{B}.$$

For the existence of solutions, see Y & Giga,, Math. Z. **204** (1990), 235-245.

• Let u_{μ} be the equilibrium point of H_{μ} , and approximate $H_{\mu}(u_{\mu} + \tilde{u}) \approx H_{\mu}(u_{\mu}) + \frac{1}{2} \langle \mathcal{H}_{\mu}\tilde{u}, \tilde{u} \rangle$ with a linear operator \mathcal{H}_{μ} . If $c \|\tilde{u}\|^2 \leq \langle \mathcal{H}_{\mu}\tilde{u}, \tilde{u} \rangle$

holds $\langle \mathcal{H}_{\mu}\tilde{u},\tilde{u}\rangle$ plays the role of Lyapunov function

• Problem: What is \mathcal{H}_{μ} ? What is the condition on μ for the stability?

Topological constraints in ideal MHD (3-2)

Structures created on Casimir leaves: Beltrami fields (Taylor relaxed states:)

Figure: Bifurcation of Taylor relaxed states (the figures plot the magnetic surfaces). The helicity C_2 plays the role of a bifurcation parameter.

Y & R. L. Dewar; J. Phys. A: Math. Theor. 45 (2012), 365502 (36pp).

Zensho Yoshida (U. Tokyo)

Topological constraints in ideal MHD (4)

Structures created on Casimir leaves: Alfvén waves

- The stationary point of $H \mu C_1 \lambda C_3$ is given by $\rho \mathbf{V} = \lambda \mathbf{B}$, $\mathbf{B} = \lambda \mathbf{V}$, and Bernoulli's relation $\rho V^2/2 + h(\rho) = \mu$.
- Nontrivial solutions are given by $\lambda^2 = 1$, $\rho = 1$, and

$$\boldsymbol{V} = \pm \boldsymbol{B}. \quad |\boldsymbol{V}| = \text{constant.}$$
 (11)

• Putting (with $B_0 = \text{constant}$)

$$\boldsymbol{B} = \boldsymbol{B}_0 + \boldsymbol{b}, \quad \boldsymbol{V} = \pm \boldsymbol{B}_0 + \boldsymbol{v},$$

and boosting $\mathbf{x} \rightarrow \mathbf{x} \mp \mathbf{B}_0 t$, the *wave component* satisfies

$$\begin{array}{lll} \partial_t \boldsymbol{v} &=& -(\nabla \times \boldsymbol{v}) \times \boldsymbol{v} + (\nabla \times \boldsymbol{b}) \times (\boldsymbol{b} + \boldsymbol{B}_0) - \nabla (V^2/2 + h), \\ \partial_t \boldsymbol{b} &=& \nabla \times [\boldsymbol{v} \times (\boldsymbol{b} + \boldsymbol{B}_0)], \end{array}$$

 The determining equations (11) have a large set of exact nonlinear solutions, implying that Alfvén waves, propagating on a homogeneous ambient field, have a large degree of freedom; arbitrarily shaped waves propagate keeping the wave forms.

Zensho Yoshida (U. Tokyo)

Emergence of nontrivial structures

- $\leftarrow \mathsf{Nontrivial} \ `effective \ energy'$
 - $\leftarrow \mathsf{Topological} \ \mathsf{constraints} = \mathsf{Phase} \ \mathsf{space} \ \mathsf{foliation}$

Conclusion

- $\leftarrow \mathsf{Nontrivial} \ `effective \ energy'$
 - $\leftarrow \text{Topological constraints} = \text{Phase space foliation}$

2 Casimir invariants (helicity, etc.) foliates the phase space

Conclusion

Image Emergence of nontrivial structures

 ← Nontrivial 'effective energy'
 ← Topological constraints = Phase space foliation

2 Casimir invariants (helicity, etc.) foliates the phase space

 Examples of 'structures' in plasmas: Beltrami vortexes (Taylor relaxed sate, flux rope, etc.) Alfvén waves

Conclusion

Image and the structures of the st

2 Casimir invariants (helicity, etc.) foliates the phase space

 Examples of 'structures' in plasmas: Beltrami vortexes (Taylor relaxed sate, flux rope, etc.) Alfvén waves

Questions:

- What is the 'origin' of the Casimirs?
- I How about the local constraints?

• Theoretically, a constant of motion is a reflection of some symmetry.

- Theoretically, a constant of motion is a reflection of some symmetry.
- What is the symmetry that generates a Casimir?

- Theoretically, a constant of motion is a reflection of some symmetry.
- What is the *symmetry* that generates a Casimir?
- The constancy of the Casimir is independent of the Hamiltonian. Hence, it is conceivable that the Casimir pertains to some *gauge symmetry*.

- Theoretically, a constant of motion is a reflection of some symmetry.
- What is the *symmetry* that generates a Casimir?
- The constancy of the Casimir is independent of the Hamiltonian. Hence, it is conceivable that the Casimir pertains to some *gauge symmetry*.
- There must be some fundamental canonical system beneath the MHD system, and the MHD system is its *reduction*. The Casimir is, then, the Noether charge of the gauge transformation pertinent to the redundancy.

• Physical systems are the *realizations* of some (Lie) algebra.

- Physical systems are the *realizations* of some (Lie) algebra.
- Here we explore possible realizations of the *Heisenberg algebra*:

- Physical systems are the *realizations* of some (Lie) algebra.
- Here we explore possible realizations of the *Heisenberg algebra*:

$$[p_j, q_k] = c\delta_{jk} \Rightarrow \begin{cases} \{F, G\} = (\mathbf{z}, [\partial_{\mathbf{z}}F, \partial_{\mathbf{z}}G]) \\ \\ [\check{p}_j, \check{q}_k] = \frac{1}{i\hbar}\delta_{jk} \end{cases}$$

- Physical systems are the *realizations* of some (Lie) algebra.
- Here we explore possible realizations of the *Heisenberg algebra*:

$$[p_j, q_k] = c\delta_{jk} \Rightarrow \begin{cases} \{F, G\} = (\mathbf{z}, [\partial_{\mathbf{z}} F, \partial_{\mathbf{z}} G]) \\ \\ [\check{p}_j, \check{q}_k] = \frac{1}{i\hbar}\delta_{jk} \end{cases}$$

• Clebsch field $[p_j(\mathbf{x}), q_k(\mathbf{y})] = \delta_{jk} \delta(\mathbf{x} - \mathbf{y})$

$$\Rightarrow \begin{cases} \{F, G\}_f = (\partial_{\boldsymbol{u}} F, J \partial_{\boldsymbol{u}} G) : \text{ Classical fluid systems} \\ \\ [\psi_j(\boldsymbol{x}), \psi_k^*(\boldsymbol{y})] = \frac{1}{i\hbar} \delta_{jk} \delta(\boldsymbol{x} - \boldsymbol{y}) : \text{ Quantum field systems} \end{cases}$$

Classical realization as an Eulerian flow (I)

- Phase space $Z(x) = (q_0(x), q_1(x), \cdots, p_0(x), p_1(x), \cdots) \in X$.
- Canonical Poisson algebra on $C^\infty(X)$ with

$$\{F,G\}_{c} = (\mathbf{Z}, [\partial_{\mathbf{Z}}F, \partial_{\mathbf{Z}}G]) = (\partial_{\mathbf{Z}}F, J_{c}\partial_{\mathbf{Z}}G), \quad J_{c} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$$

Classical realization as an Eulerian flow (I)

- Phase space $Z(x) = (q_0(x), q_1(x), \cdots, p_0(x), p_1(x), \cdots) \in X$.
- Canonical Poisson algebra on $C^\infty(X)$ with

$$\{F,G\}_c = (\mathbf{Z}, [\partial_{\mathbf{Z}}F, \partial_{\mathbf{Z}}G]) = (\partial_{\mathbf{Z}}F, J_c\partial_{\mathbf{Z}}G), \quad J_c = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$$

• The Clebsch reduction to the fluid variables:

$$\boldsymbol{u} = (\rho, \boldsymbol{V}), \quad \left\{ \begin{array}{l} \rho = p_0 \\ \boldsymbol{V} = \frac{1}{p_0} (p_0 \mathrm{d}q_0 + p_1 \mathrm{d}q_1 + \cdots) \end{array} \right.$$

yields a non-canonical Poisson system with

$$\{F(\boldsymbol{u}(\boldsymbol{Z})), G(\boldsymbol{u}(\boldsymbol{Z}))\}_{c} = \{F(\boldsymbol{u}), G(\boldsymbol{u})\}_{f} = (\partial_{\boldsymbol{Z}}F, J_{f}\partial_{\boldsymbol{Z}}G), \\ J_{f} = \begin{pmatrix} 0 & -\nabla \cdot \\ -\nabla & -\rho^{-1}(\nabla \times \boldsymbol{V}) \times \end{pmatrix}.$$

Classical realization as an Eulerian flow (II)

• With a Hamiltonian (conventional fluid energy)

$$\mathscr{H}_{c} = \int \left[\frac{|\mathbf{V}|^{2}}{2} + U(\rho) \right] \rho \, dx,$$

the Hamilton's equation $\dot{\boldsymbol{u}} = J_f \partial_{\boldsymbol{u}} H_c$ reads as the classical system of ideal fluid:

$$\partial_t \rho + \nabla \cdot (\boldsymbol{V} \rho) = 0,$$

 $\partial_t \boldsymbol{V} + (\boldsymbol{V} \cdot \nabla) \boldsymbol{V} = -\rho^{-1} \nabla P,$

Classical realization as an Eulerian flow (II)

• With a Hamiltonian (conventional fluid energy)

$$\mathscr{H}_{c} = \int \left[\frac{|\mathbf{V}|^{2}}{2} + U(\rho) \right] \rho \, dx,$$

the Hamilton's equation $\dot{\boldsymbol{u}} = J_f \partial_{\boldsymbol{u}} H_c$ reads as the classical system of ideal fluid:

$$egin{aligned} &\partial_t
ho +
abla \cdot (oldsymbol{V}
ho) = 0, \ &\partial_t oldsymbol{V} + (oldsymbol{V} \cdot
abla) oldsymbol{V} = -
ho^{-1}
abla P, \end{aligned}$$

• The noncanonical bracket $\{, \}_f$ has Casimirs:

$$\begin{aligned} & C_1 &= \int_{\Omega} \rho \, \mathrm{d}^3 x, \\ & C_2 &= \frac{1}{2} \int_{\Omega} \boldsymbol{V} \cdot (\nabla \times \boldsymbol{V}) \, \mathrm{d}^3 x. \end{aligned}$$

Classical realization as an MHD plasma (I)

• The phase space:

$$\boldsymbol{Z}(\boldsymbol{x})=(q_0,q_1,\cdots,s_1,\cdots;p_0,p_1,\cdots,r_1,\cdots)\in X.$$

• Canonical Poisson algebra with $\{F, G\}_c = (Z, [\partial_Z F, \partial_Z G]).$

Classical realization as an MHD plasma (I)

• The phase space:

$$\boldsymbol{Z}(\boldsymbol{x})=(q_0,q_1,\cdots,s_1,\cdots;p_0,p_1,\cdots,r_1,\cdots)\in X.$$

Canonical Poisson algebra with {F, G}_c = (Z, [∂_ZF, ∂_ZG]).
The Clebsch reduction to the MHD field:

$$\boldsymbol{u} = (\rho, \boldsymbol{V}, \boldsymbol{B}), \quad \begin{cases} \rho = p_0 \\ \boldsymbol{V} = \frac{1}{p_0} [p_0 \mathrm{d} q_0 + p_1 \mathrm{d} q_1 + \dots - (r_1 \mathrm{d} s_1 \dots)] \\ \boldsymbol{B} = \mathrm{d} \left(\frac{p_1}{p_0}\right) \wedge \mathrm{d} s_1 + \dots \end{cases}$$

yields a non-canonical Poisson system with

$$\{F(\boldsymbol{u}(\boldsymbol{Z})), G(\boldsymbol{u}(\boldsymbol{Z}))\}_{c} = \{F(\boldsymbol{u}), G(\boldsymbol{u})\}_{f} = (\partial_{\boldsymbol{Z}}F, J_{MHD}\partial_{\boldsymbol{Z}}G), \\ J_{MHD} = \begin{pmatrix} 0 & -\nabla \cdot & 0 \\ -\nabla & -\rho^{-1}(\nabla \times \boldsymbol{V}) \times & \rho^{-1}(\nabla \times \circ) \times \boldsymbol{B} \\ 0 & \nabla \times (\circ \times \rho^{-1}\boldsymbol{B}) & 0 \end{pmatrix}.$$

Topological constraints in ideal MHD (continued) Extension of the phase space

To formulate the local magnetic flux as a Casimir invariant, we extend the phase space in order to include topological indexes information in the set of dynamical variables.

Adding a 2-form \check{B} , which we call a *phantom field*, to the MHD variables, gives the extended phase space state vector

$$\tilde{\boldsymbol{u}} = (\rho, \boldsymbol{V}, \boldsymbol{B}, \check{\boldsymbol{B}})^{T},$$
(12)

on which we define a degenerate Poisson manifold by

Using the same Hamiltonian (9), we obtain an extended dynamics governed by exactly the same MHD equations together with an additional equation $\partial_t \boldsymbol{\check{B}} = \nabla \times (\boldsymbol{V} \times \boldsymbol{\check{B}}).$

Topological constraints in ideal MHD (continued) Circulation theorem represented by the Casimirs of the extended system

- The extended Poisson operator (13) has the set of Casimir invariants
 - composed of C_1 , C_2 , and a new cross helicity

$$C_4 = \int_{\Omega} \boldsymbol{A} \cdot \check{\boldsymbol{B}} \, \mathrm{d}^3 x,$$

as well as a phantom magnetic helicity

$$C_5 = \frac{1}{2} \int_{\Omega} \check{\boldsymbol{A}} \cdot \check{\boldsymbol{B}} \, \mathrm{d}^3 x.$$

• Interestingly, the original (standard) cross helicity $C_3 = \int_{\Omega} \mathbf{V} \cdot \mathbf{B} \, d^3 x$ is no longer a Casimir invariant of the extended system, although it is still a constant of motion. The constancy of C_3 is now due to the "symmetry" of a Hamiltonian with ignorable dependence on the phantom field \mathbf{B} ;

- Beneath various fluid systems (e.g. Eulerian fluid, MHD, etc.) is the canonical Lie-Poisson system of classical fields which is a realization of the Heisenberg algebra.
- Variety of *foliated phase spaces*, on which nontrivial effective energies generate interesting structures, are derived by the *Clebsch reduction*.
- The Casimir invariants of the fluid systems are the Noether charges; the co-adjoint group action generated by the Casimir represents the gauge symmetry.

- Y, Self-organization by topological constraints: hierarchy of foliated phase space, Adv. Phys. X 1 (2016), 2-19.
- Y & E. Hameiri, Canonical Hamiltonian mechanics of Hall magnetohydrodynamics and its limit to ideal magnetohydrodynamics, J. Phys. A: Math. Theor. 46 (2013) 335502 (16pp).
- Y & P. J. Morrison; A hierarchy of noncanonical Hamiltonian systems: circulation laws in an extended phase space, Fluid Dyn. Res. 46 (2014), 031412 (21pp).
- K. Tanehashi & Y, Gauge symmetries and Noether charges in Clebsch-parameterized magnetohydrodynamics, J. Phys. A: Math. Theor. 48 (2015), 495501 (20pp).
- Y & S. M. Mahajan; Quantum spirals, J. Phys. A: Math. Theor. 49 (2016), 055501 (12pp).