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T y J@}Q!r IQ leS 11 turbUIent ﬂOWS . (https://wwgnrel.gov) -«
clcespertormance or soundness of facility,

[dentification of a vortex with its itensity 1s important,
and clarifying the feature and mechanism of the vortex 1s

necessary.

No universal definition has been established, and
existence of vortices depends on an applied definition.




H%*"T@

(Garth et al., 2005)

k& ., e
[ICTSH; t@opnate because 1t 1s not Galilel
iN(dependingiontthe mertial coordinate system).
[cult to distinguish the geometries

lefinitions
sed are on local approach spec:1ﬁec by the
VGIOCltV oradient tensor V v such as the local flow

geometry (topology) or pressure minimum feature™.

the complex eigenvalues of Vv that specify the invariant
vortical flow have greatly contributed in the vortex
definitions (e.g., A definition) and classification of flows.
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(*: Chong et al., Phy. Fluids, 1990, Hunt, STR-88, 1988, Jeong et al., J. Fluid. Mech., 1995)
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oirtopology of a vortex
.

the following questions:

application ofi the eigenvalues of V v, what
pretation of the eigenvalues of Vv ?
thIl correct?)

No 1de ication of flow symmetry™ ?

How: are the pressure minimum in the vortex definitions
and vortex stretching related to the local flow topology?

What 1s the universal definition of a vortex or vortical axis?
These 1tems are now being clarified with a new aspect...

(*: Blackburn et al., J. Fluid. Mech., 1996)




ZipocalNiiowaiopelogy and quantities
IS OWASICCIHIET by Vv

- Thglocililoyw gl apoint can be expressed as:
> 1ayIGIICXPANSIon ofve tﬁty neglecting higher order :

(Summation convention is applied)

> Bigenvaluesieranaieigenvectors & (i=1,2,3) of Vv specify the
local flow: geometry m terms of the Galiler invariant.

a linear combination of flows along
& (i=1,2,3), in the directions and with
intensities according to & .

(Garth et al., 2005)




vortical flow geometry

CXICOTI ug@md real ergenvalues, e, + i y and ¢, and
CIZCNVECtors|G, = 797, and g,
[CCIOTERRE XD (£, )L COS(YN)S,, — Sin(y)m,, 1+ exp(e, )&

¢

O s ic al ﬂO 'y Stable focus— Unstable focus—

stretching / compressing /

Flow proceeds | N
(converges) along &. —

Flow swirls in ¢,-1,,, \'iz\: | Inflow outflow
plane (swirl plane 7). = vortg LYLS

D>01
Inflow (converge) or

outflow (diverge)

according to & . h ’ ‘Q‘?&Tﬁé

2 5 able node— nstable node—
Fig. 2.1: vortical flow topology (¢;<0) e Uddtlbl de

( *: Nakayama, Fluid Dyn. Res., 2014) (Wallace, Phy. Fluids 2009)

ID<0




MY arise. . .

\ {1’ | aslgeen applied m several turbulent
[HowsEndNmithc majoEvoricx definitions since around 1990 .

“However..... x = 2exp(egt) {cos(Yr)e,, — sin(y)m,+ exp(e, )&

Does 1t swirl uniformly with constant
around a point?

Does 1t ¢converge (1nflow) or diverge
(outflow) uniformly around a point?

What 1s the physical interpretation of
the eigenvalues?

How 1s the flow symmetry? (Fig. 2.1: vortical flow
topology (¢;<0) )




ONWESTdyunrticRdctan ot the
tgoolovy ez okils
@ ocall velocitys
V= (apas) e —1.2)

> decomposeie oMW mnto
(1) azimuthal tHow v,
(1) radial tlow v,
such as:

v =v.e tvye,
e., e, : unit vectors of radial and
azimuthal directions




— (ay17a5)/2

0, : unitary matrix having two real eigenvalues Ao,
and their orthogonal eigenvectors &, (=1, 2).
® the feature of v, : Ao, specity
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: 3% :::‘7 i : 2
Define swirlity ¢ *1 that represents the N V \ v,

(b) (©)
unidirectionality and intensity of v, (A0)) Fig. 3.1: local flow and
decomposed v, in flow transition
into a vortex. 0<¢ in (a) and (b),
¢ := sgn(Ae, A6, ) [A6; A6, [ and 0<¢ in (c), i.e., vortical flow.

in terms of the geometrical average.

¢ 1s defined 1n vortical/non-vortical
(*1: Nakayama, Fi i e e flow. © applicable to prediction of a

*2 10
*2: Nakayama, ICTAM2016) VOortex




x = 2exp(e) {COS(YNE, — sin(yn)rg 1+ exp(e )

a )
dyp dyp dig

VVv= ay a, dp

dsz; dzp dj

N\ =




Valuesfand swirlity

® 3-din T’ v| has a!ieast"(')'ne real

ergenvalteis, and realieigenvector .

(i

®Wedetime acoordimate system (x.)
where thwz plane with two

orthonormalfvasSesis an arbitrany
plane lincar mdependent of (non-
parallel to) & (set as x; axis):

® Vv in this coordinate system:
a ™)
a; ap 0

a,; a;, 0

dz; d3p &,

- >




oo i 1r11ty
JM temNt IS

...... ticallyaproventthat
A6 0
1 J-tJ') l .u..) ¢ . —
(tODOlO ,'_, CAFCONE 1t10n) Note: ¢ 1s defined 1n

vortical/non-vortical

., 9, elgenvalues* flow
(algebraic cor \ y
are equivalent. ¢is expressed as: * A= (0/3)°+ (R/2)>>0
O w:¢ and¢=Q—3g2 (Q,thhe2ndand3rd
a

invariants of V)
» 1 in complex eigenvalues of Vv : A definition(Chong et al.,

geometrical average of v,,. Phy. Fluids, 1990)
» swirlity 1s invariant independent of the 3

arbitrary plane (non parallel to € axis). (Nakayama, Fluid Dyn. Res., 2014)




e \\,y af*

Xmsed
A rat1 form:

: : - : Fig. 3.2: decomposed v, where
» O, : unitary matrix having tworeal k) 025 (5. <0) and

eigenvalues A-, and'their orthogonal  (right) <0 (with same
ei genvectors Z’”l‘ (i=1 : 2) complex eigenvalues of V).
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SNl Rands Have "r" cSame S1gn
OF40)]. 0 uritary’
NS therSame ‘|‘1‘r‘ t1on around

el

211010) p“ (Fig. 3.2: decomposed v, where

® complctehmilowtrom all directions (left) 0 < o (Ar; < 0) and
(right) o < 0 (with the same

> ;U”l, )U’z <0 complex eigenvalues of Vv).)

Define sourcity o *1 that represents the
unidirectionality and intensity of v, (Ar))
in terms of the geometrical average
O := sgn(Ar; Ary) |Ary Ary| 12
(Nakayama, Fluid Dyn. Res., 2014) 15




of Vv
| -
) 11dS u.rngms somplex eigenvalues (&, % i),
Jﬁor phie'complex eigenvalues:
1) (€= 1) (fpl + ”Tpl)
=10V, /0 ])

- ditferentlysirom the real eigenvector, ¢, and #,, are
restricted 1 terms of the ratio of their norms (Iengths).

> ¢ = el i
> ¢ 1S an 1variant quantity.

> note that ¢, and #,, canbesetas¢ Ly,




Syameuyaquantity of vortical flow

G0)| sidered in the topological analysis.

CHOPOIOEYAG Sjonies and' ¢ represents the flow symmetry.

much skewed elliptic

Fig. 3.3: flow geometry in ¢, -7, plane with same complex eigenvalues (&g, ) = (-1, 2 W7




Hex: sp%” Vwhere the
nal ‘)n ateparallel to:

o y ”pl t:r)!—":/_/l!) éplxnpl
® Vyanilieieoordinate sysiem of V:

[

(Fig. 2.1: vortical flow
topology (£,< 0

w; = (@, ¢,/ /|6, e Y))

Vv: 0)2:((0, ”pl/|”pl|)

w;=—(ct1l/c)y (w;, : eigen-helicity—

density (Zhang et al., Phy. Fluids, 2006)

The vortex space facilitates to investigate:
> detail topology

> physical features such as pressure mimnimum or vortex stretching




) IJ I @vf catureiin swirl plane and
~ ﬂ/gjgﬂ’ quantities
.-rmlw' anﬂ.ve TP

Ay, Ay = |c—17’c|¢/2
.)Lel,)wz ~ n‘,) ple

> switlitysandSourcity,

¢ U0 [ Aoy [ER
= suri(es) | eg| =
o=¢ept— (c—1/c)*> ¢ 2 /4

Fig. 3.4: flow geometry in Zwith same complex
eigenvalues (5, ) = (=1, 2 ) but different ¢ where

(a) c=0.8 (0=0.9), and (b) c=2.5 (o= —1.9). 9
(Nakayama, Fluid Dyn. Res., 2014)




LIS L_'r_ls p ) V,nl wg_rn !atlon o complex eigenvalues

x = 2exp(ext) {cos(Y)S,,, — sin(y)n,;+ exp(e,HE
"

| ~
d1p dip diz

Ay dpy dpj
Loy Loy Lyy)

-




SMNNGSTTICICHCy 0f £, as classifying
W/ outilow Vortices

o Bl B, T a)zl |
i -

VS| S 0]
O.)

/

)Lrl, Arn — &, :|:"g|@—1/C|l/J/2
> Radial flow m*?A(in vortical flow):
Ay AN

5 —¢&p  (mvariant)

Fig. 3.5: radial flow with same complex

B ¢, 1s difficult to distinguish Zi_i?nvalues (heR, ) = (_—01 ,82 ) b_ug :
complete inflow(outflow) or mixed , - de(f)n ey ‘(a“ff:(a_)f-;)" (=02
flow with both inflow and outflow. (same as Fig. 3.2)

(Nakayama, Fluid Dyn. Res., 2014) =




|- Al gelmglgiildil gl
OO CHCOUSIINILD e

& N: [ '
B about 85Y0p0ismiiowW: VOrtices

classified bye; <'O are VOrtices
with mixed inflow and outflow.
m This fact gives aniimportant feature

in the effect of vortex: stretching. 0
Fig.3.6 JPDF (Joint Probability

Density Function) of oand ¢ in
terms of ¢, < 0 (average-inflow
vortices).

(Nakayama, Phy. Rev. Fluid, 2017)




-jcjgng'_lé) S etween swirlity and vortical
VAl rrlr"l'f'\/

OLICCSTT NSO opﬁlomogeneous turbulence)
}, Ok JJ(, hiavetine mﬂﬁ’atlon
L ilosy syl ne;_r*/_l [mportant for
develo pImc __[‘i)l' VOTItex.

<

¢ and c
codevelop
or
codecay.

A

Fig. 3.7 : contours of ¢ and c. Fig.3.8 JPDF of c and ¢.
(ref. e.g., Nakayama, Phy. Rev. Fluids, 2017)




Fig. 3.9 : animation of a vortex | When c increases, a new contour of ¢
with contours of ¢ and c. (intense ¢ region) appears.




-

ture of a vortex
-

jofvortex associated with the

Vortex space facilitates the analysis of these features.




m by topology
e D I Vi1 = [-p,; /p] of the

Iiffcrentiatimg the Nayier-Stokes equation,
IAINSICAdY Straim and viScous terms, to estimate the

mimum demved from the vortical motion™!.

> H= (A AA)2 (A=)
L' the pressure min. by vortical flow in P should be estimated.

pressure feature in P pressure minimum plane
(*1: Jeong et al., J. Fluid Mech., 1995, *2: Nakayama et al., Fluid Dyn. Res., 2014)




, CSsuLemInimum
S Vi l.r.l. lf_\)1 da'ng B relates to the pressure |

minimum in ‘P.

O VO CRSpACE H is exﬁressed as;

o (=Yg 8P1/J | Ll

H-= (c—l/c £3 i

/

f).pl 0 4 ) O ! By rotating the bases in 2
0 )Lpz sz I 1n accordance Wlth the

. . 5> |1 orthonormal eigenvectors
Ui L, €, ! ofthe Hessians Ap, n 7.

— 2
Ap; = (eg=F) £ |(c—1/c)eg|p , (
Fig. 4.1: flow geometry in Pand
Pressure minimum: Ap;, Ap, <0 pressure minimum feature where

condition = cle | <y (Y= @) afﬁﬁ’(lﬁc (O 411 2), and (a) =12,




AW this criteria unifies (satisties) the
pItrons (Nakayama et al., Fluid Dyn. Res., 2014) .

A'deTimiiions (c ong ct al., Phy. Fluids, 1990)
® Vy has omplex eigenvalues

2. O defiition (Hunt et al., CTR-S88 1988)
® vorticity exceeds rate of strain
® 3-dim pressure [Laplacian

A‘Z definition (Jeong et al., J. Fluid. Mech.,1995):
® cxistence of pressure min. plane by vortical flow




AthrStrain (compression/tension)

(@tseigenvalues (eigenvectors))
/ 2

M TAle o, }r‘ .Chy therate off generation of enstrophy
(0= 1S eXPi 33351;1:5 (@imenez, J. fuid. Mech., 1993):

= ;S; O /(0 ;) I

However, eigenvectors of @
s;; are not 1dentical to the ? -

swirl plane




&

pacs, | ng the bases in 2
SIACCOraances ﬂ.ﬁ f;r cigenyector of Ar,)

/%)
g={ i’ + ,\ 20 A3 |/ (0, w,)
o= () = DN, — () + )2
(Ar3 =€, 03 =—(cH1/c)g)

& analyse vortex stretching by decomposition of vorticity
components parallel and normal to P .

~

O 0 < o: increases effectively both swirl and axis orthogonality

O o< 0 : increase swirl but decreases the orthogonality
\ > Ar; and o specify the characteristic of the stretching

4




6 ve Vontex: stretching

ONniilowamralifdircctions effectively
str@ﬂ_@pwirl (@), wilel

increasestorthogonality ot a

vortical axis.
This characterls!lc ISispectiicd by,
SOUrCIty. il (Aryws)r

| N
| average | g2  complete |

i inflow " inflow

Vorticity mithe vortex stretching can [

be characterized by decomposition of [ age
vorticity in terms of components
parallel and normal to 2.

Fig. 4.2: each term of the vortex stretching in
average-inflow vortices (£,<0), non-dimensionalized

, by the root mean square value of the vorticity in an
(ref.: Nakayama, Phy. Rev. Fluids, 2017) isotropic homogencous turbulence. 31




Fig. 4.3 : A life of an average inflow vortex (£,<0) in an isotropic
homogeneous turbulence (generation ™ development = decay ).

O 0 < o: increases effectively both swirl and axis orthogonality
O o< 0 : increase swirl but decreases the orthogonality

» Ar; and o specify the characteristic of the stretching




P

o

avortical axis
C last eigenvector of Vv

Wersopackatortiiclocalfiow topelogy where V v has complex
}, CONULALS 2l cal CIgenve ltes; e, £ 1y and ¢ , and their
[CSPECLIVG

SCIBENVECIOTS ¢, &= 1 77, and &,

S Elo: :,c';ron*’ﬁ
X = 2eXp(ERDNCOS(WNG, — sin(yn)n, i+ [lexp(e 1)

Flow in has been examined. ]

> We focus on a real ersenvector.

Flow proceeds (converges) along C.

(Fig. 2.1: vortical flow
topology (¢7< 0) )




ot

indicates anfaxistdirection i terms of
Mvananisocaliopology, and can be
I dehmed i [caliicgion Vowhere

() qbi@has complex eigenvalues)

> Defimeavoniicallaxis along &

> Eigen=vortical=axis Lmec o (x)
(a=lo ] (=1.2)3)") in V such that




pween ergen-vortical-axis line

& ater)

t e!w‘ een vorticity vector and

The relationships between
¢ and w can be formulated,
relating to the topology,
but they are not simple.




€
Evontical-axis/vorticitly lines

couS decaying turbulence
-

h phase-shift method

6.
5:
4
34
2!
1E
0

Fig.5.1: Vortical regions (contour of ¢ = 2) and eigen-vortical-axis line (bold line)/ 34
vorticity line (narrow line) in a sub-domain (1337>1337*43#). (¢,: ¢ 1n axes)




plRarttaced axis —consistency

[FCOrC region

a vorticity
line deviates
the core
regon of a
vortex and
symmetry of
vortical flow
decreases.

5
4
3
2
1
0

2I¢

.

eigen-
vortical-axis

line proceeds

o ¢a

in the core
region of a
vortex, and

has high

swirlity of
vortical flow.

(b)

Fig. 5.2: Zoomed vortical regions (¢=2) and vortical axes traced by a eigen-vortical-axis
line (bold line) and a vorticity line (narrow line), where the color in the axes shows (a) ¢

(¢,) and (b) ¢ (c,) in the axes.




-
[l _|r=c “traced axes

ical-axis line ( !AL) passes the core region.

—

D4

EVAL follows the core region of\
a vortex.
A vorticity line that passes point
A deviates the core region of a
vortex with low swirlity. 4

Fig. 5.3: Vortical regions (contours where ¢ = 2), and an eigen-
vortical-axis line (bold line) and two vorticity lines (narrow

lines) in a sub-domain (Kolmogorov length 7= 0.012).




o Guv N

Fig. 5.4: Vortical axes traced by eigen-vortical-axis
line (bold line) and vorticity line (narrow line). 39




ICSfolECIgen-vortical-axis/vorticitly
[ciomogeneous turbulence

' CIZEHEVOT tlozllene iSHitie tends to concentrate and have intense
ieliby _l_ [HCICOTC r&glon ol vortices.

Flg 5.5: bundle features of eigen-vortical-axis line (left)/vorticity line (right).
(¢, w,: ¢ and |w| 1n axes)




]

Slotsthcvelocity: gradient tensor are insufficient

detail tlow topology
o relAeneRopology. to physical characteristics of a
vortex
D, Pressure minimum in the swirl plane and vortex stretching
arc specitied by the detail topological quantities.

3. Vorticity should be decomposed into components parallel
and normal to the swirl plane for specifying the vortex
stretching.




[yaandiraic ofistram tensor are important quantities,

howeverstlie behavior of: present topological quantities
contributes the vorticity.

The present topological approach enables us to watch flow
with a new sight, 1.¢., detail flow characteristics.




