International/Interdisciplinary Seminar Nonlinear Science

> 13-14 March, 2017 The University of Tokyo

PM session on 14th March

Local flow geometry of a vortex and associated physical quantities

Katsuyuki Nakayama

Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Aichi, Japan

# Introduction I.1 Vortices in flow



- 1. Vortices play important roles in turbulent flows (https://www.nrel.gov) and influences performance or soundness of facility, system or machinery in various engineering field, such as power plants, wind turbines, or aviation.
- 2. Identification of a vortex with its intensity is important, and clarifying the feature and mechanism of the vortex is necessary.
- 3. No universal definition has been established, and existence of vortices depends on an applied definition.



# 1.2 On vortex definition

(Garth et al., 2005)

- 1. <u>Stream line is not appropriate</u> because it is not Galilei invariant (depending on the inertial coordinate system).
- 2. <u>Vorticity is difficult to distinguish the geometries</u> (topologies) between shear and vortical (swirling) flows.
- 3. In many vortex definitions proposed, <u>popular definitions</u> frequently used are on local approach specified by the velocity gradient tensor  $\nabla v$  such as the local flow geometry (topology) or pressure minimum feature\*.
- 4. the complex eigenvalues of  $\nabla v$  that specify the invariant vortical flow have greatly contributed in the vortex definitions (e.g.,  $\Delta$  definition) and classification of flows.

(\*: Chong et al., Phy. Fluids, 1990, Hunt, STR-88, 1988, Jeong et al., J. Fluid. Mech., 1995)

### 1.3 Questions on topology of a vortex

It has been desired to clarify the following questions:

- 1. Behind frequent application of the eigenvalues of  $\nabla v$ , what is the clear interpretation of the eigenvalues of  $\nabla v$ ? (Is the classification correct?)
- 2. No identification of flow symmetry\*?
- 3. How are the pressure minimum in the vortex definitions and vortex stretching related to the local flow topology?
- 4. What is the universal definition of a vortex or vortical axis? These items are now being clarified with a new aspect...

### 2. Local flow topology and quantities 2.1 flow specified by $\nabla v$

The local flow around a point can be expressed as:

> Taylor expansion of velocity neglecting higher order:

 $\frac{d}{dt}x_i = \frac{\partial v_i}{\partial x_i}x_j$  (summation convention is applied)

 $\succ$  Eigenvalues  $\varepsilon_i$  and eigenvectors  $\xi_i$  (*i*=1,2,3) of  $\nabla v$  specify the local flow geometry in terms of the Galilei invariant.



a linear combination of flows along  $\xi_i$  (*i*=1,2,3), in the directions and with intensities according to  $\varepsilon_i$ .



### 2.2 Invariant vortical flow geometry

- If ∇ν has complex conjugate and real eigenvalues, ε<sub>R</sub>± i ψ and ε<sub>a</sub>, and their respective eigenvectors ξ<sub>pl</sub>± i η<sub>pl</sub> and ζ,
   Flow trajectory\*: x = 2exp(ε<sub>R</sub>t) {cos(ψt)ξ<sub>pl</sub> sin(ψt)η<sub>pl</sub>} + exp(ε<sub>a</sub>t)ζ
- → Vortical flow





### 2.3 Questions may arise...

This flow classification has been applied in several turbulent flows and in the major vortex definitions since around 1990.
 However.... x = 2exp(ε<sub>R</sub>t){cos(ψt)ξ<sub>pl</sub> - sin(ψt)η<sub>pl</sub>} + exp(ε<sub>a</sub>t)ζ

Does it <u>swirl uniformly with constant</u>  $\psi$ around a point? Does it <u>converge (inflow) or diverge</u> (outflow) uniformly around a point?

What is the physical interpretation of the eigenvalues? How is the flow symmetry?



(Fig. 2.1: vortical flow topology  $(\varepsilon_R < 0)$ )

### 3. Exploring the local flow in a plane

We study further detail of the topology in a plane.
local velocity:

ν'<sub>i</sub> = (∂ν<sub>i</sub>/∂x<sub>j</sub>) x<sub>j</sub> (i, j=1, 2)

decompose the flow into

(i) azimuthal flow v<sub>θ</sub>
(ii) radial flow v<sub>r</sub>, such as:

 $v' = v_r e_r + v_\theta e_\theta$  $e_r, e_\theta$ : unit vectors of radial and azimuthal directions



### 3.1 Azimuthal flow

 $\circ v_{\theta}$ : expressed as a specific quadratic form

$$v_{\theta} = \frac{1}{|x'|} x' Q_{\theta} x' \qquad x' = (x_1, x_2)$$
$$\nabla v = \begin{pmatrix} a_{21} & -(a_{11} - a_{22})/2 \\ -(a_{11} - a_{22})/2 & -a_{12} \end{pmatrix}$$



Q<sub>θ</sub>: unitary matrix having two real eigenvalues λ<sub>θi</sub> and their orthogonal eigenvectors ζ<sub>θi</sub> (i=1, 2).
the feature of v<sub>θ</sub>: λ<sub>θi</sub> specify

### 3.2 swirlity

• if λθ₁ and λθ₂ have the same sign
 > νθ has the same direction around a point
 > swirling flow

Define swirlity  $\phi *1$  that represents the unidirectionality and intensity of  $v_{\theta} (\lambda \theta_i)$ in terms of the geometrical average.  $\phi := \operatorname{sgn}(\lambda \theta_1 \lambda \theta_2) |\lambda \theta_1 \lambda \theta_2|^{1/2}$ 



Fig. 3.1: local flow and decomposed  $v_{\theta}$  in flow transition into a vortex.  $0 < \phi$  in (a) and (b), and  $0 < \phi$  in (c), i.e., vortical flow.

(\*1: Nakayama, *Fluid Dyn. Res.*, 2014, \*2: Nakayama, *ICTAM2016*)

 $\phi$  is defined in vortical/non-vortical flow.  $\Rightarrow$  applicable to prediction of a vortex \*2

### <Question>

What is the physical interpretation of complex eigenvalues (imaginary part ψ) of ∇ν?
how to relate ψ (eigenvalues of 3-dim ∇ν) to flow topology in a plane...

$$\boldsymbol{x} = 2\exp(\varepsilon_R t) \{\cos(\psi t)\boldsymbol{\xi}_{pl} - \sin(\psi t)\boldsymbol{\eta}_{pl}\} + \exp(\varepsilon_a t)\boldsymbol{\zeta}$$

$$\nabla \mathbf{v} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

# 3.3 Relationships between three dimensional eigenvalues and swirlity

 $\bigcirc$  3-dim  $\nabla v$  has at least one real eigenvalue  $\varepsilon_a$  and real eigenvector  $\zeta_a$ .  $\bigcirc$  We define a coordinate system  $(x_i)$ where the  $x_1$ - $x_2$  plane with two orthonormal bases is an arbitrary plane linear independent of (nonparallel to)  $\zeta$  (set as  $x_3$  axis): •  $\nabla v$  in this coordinate system:  $\begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{11} & a_{12} & 0 \\ a_{31} & a_{32} & \varepsilon_a \end{bmatrix}$  $\nabla v =$ 



### 3.4 Invariance of swirlity

In this coordinate system, it is mathematically proven that •  $0 < |\lambda_{\theta_1} \lambda_{\theta_2}|$  i.e.,  $0 < \phi$ (topological condition) •  $\nabla v$  has complex eigenvalues\* (algebraic condition) are equivalent.  $\phi$  is expressed as;  $\psi = \phi$  and  $\phi = Q - 3\varepsilon_a^2$  $\succ \psi$  in complex eigenvalues of  $\nabla v$ : geometrical average of  $v_{\theta}$ . swirlity is invariant independent of the



Note:  $\phi$  is defined in vortical/non-vortical flow.

\*  $\Delta = (Q/3)^3 + (R/2)^2 > 0$ (Q, R: the 2<sup>nd</sup> and 3<sup>rd</sup> invariants of  $\nabla v$ )  $\Delta$  definition(Chong et al., *Phy. Fluids*, 1990)

13

arbitrary plane (non parallel to  $\zeta$  axis). (Nakayama, Fluid Dyn. Res., 2014)

## 3.5 radial flow $v_r$

 $\bigcirc$  similar to  $v_{\theta}$ ,  $v_r$  is expressed as a specific quadratic form:

$$v_{r} = \frac{1}{|x'|} {}^{t}x' Q_{r}x'$$
$$\nabla v = \begin{pmatrix} a_{11} & (a_{21} + a_{12})/2 \\ (a_{21} + a_{12})/2 & a_{22} \end{pmatrix}$$



>  $Q_r$ : unitary matrix having two real eigenvalues  $\lambda_{r_i}$  and their orthogonal eigenvectors  $\xi_{r_i}$  (*i*=1, 2). Fig. 3.2: decomposed  $v_r$  where (left)  $0 < \sigma$  ( $\lambda r_i < 0$ ) and (right)  $\sigma < 0$  (with same complex eigenvalues of  $\nabla v$ ).

### 3.6 sourcity

 $\bigcirc$  if  $\lambda_{r_1}$  and  $\lambda_{r_2}$  have the same sign  $(0 < |Q_r|, Q_r: unitary)$  $> v_r$  has the same direction around a point complete inflow from all directions  $\succ \lambda r_1, \lambda r_2 < 0$ 

Define sourcity  $\sigma *1$  that represents the unidirectionality and intensity of  $v_r$  ( $\lambda r_i$ ) in terms of the geometrical average  $\sigma := \operatorname{sgn}(\lambda_{r_1} \lambda_{r_2}) |\lambda_{r_1} \lambda_{r_2}|^{1/2}$ 



(right)  $\sigma < 0$  (with the same complex eigenvalues of  $\nabla v$ ).)

#### 3.7 another invariant of $\nabla v$

If  $\nabla v (=A)$  has conjugate complex eigenvalues  $(\varepsilon_R \pm i\psi)$ , • Eigenequation for the complex eigenvalues:  $A(\xi_{pl} \pm i\eta_{pl}) = (\varepsilon_R \pm i\psi) (\xi_{pl} \pm i\eta_{pl})$  $(A = [a_{ij}] = [\partial v_i / \partial x_j])$ 

> differently from the real eigenvector, ξ<sub>pl</sub> and η<sub>pl</sub> are restricted in terms of the ratio of their norms (lengths).
> c = |ξ<sub>pl</sub>| / |η<sub>pl</sub>|
> c is an invariant quantity.

> note that  $\xi_{pl}$  and  $\eta_{pl}$  can be set as  $\xi_{pl} \perp \eta_{pl}$ .

### 3.8 symmetry quantity of vortical flow

*c* has not been considered in the topological analysis.
 the topology depends on *c*, and *c* represents the flow symmetry.



### 3.9 vortex space

• We define "vortex space" V where the orthonormal bases are parallel to:  $\xi_{pl}, \eta_{pl} \ (\xi_{pl} \perp \eta_{pl}), \xi_{pl} \times \eta_{pl}$  $\bigcirc \nabla v$  in the coordinate system of V:



(Fig. 2.1: vortical flow topology ( $\varepsilon_R < 0$ ))

density (Zhang et al., Phy. Fluids, 2006)

The vortex space facilitates to investigate: detail topology > physical features such as pressure minimum or vortex stretching 18

# 3.10 Flow feature in swirl plane and physical quantities

characteristics of  $v_r$  and  $v_{\theta}$  in  $\mathcal{P}$ :  $\lambda r_1, \lambda r_2 = \varepsilon_R \pm |c-1/c|\phi/2$   $\lambda \theta_1, \lambda \theta_2 = -c\phi, -\phi/c$ > swirlity and sourcity  $\phi = \psi = |\lambda \theta_1 \lambda \theta_2|^{1/2}$   $\sigma = \operatorname{sgn}(\alpha) |\alpha|^{1/2}$  $\alpha = \varepsilon_R^2 - (c-1/c)^2 \phi^2/4$ (a)



Fig. 3.4: flow geometry in  $\mathcal{P}$  with same complex eigenvalues ( $\varepsilon_R$ ,  $\psi$ ) = (-1, 2) but different *c* where (a) *c*=0.8 ( $\sigma$ = 0.9), and (b) *c*=2.5 ( $\sigma$ = -1.9). 19

(Nakayama, Fluid Dyn. Res., 2014)

### <Question>

• What is the physical interpretation of complex eigenvalues (real part  $\varepsilon_R$ ) of  $\nabla \nu$ ?

 $\boldsymbol{x} = 2\exp(\varepsilon_R t) \{\cos(\psi t)\boldsymbol{\xi}_{pl} - \sin(\psi t)\boldsymbol{\eta}_{pl}\} + \exp(\varepsilon_a t)\boldsymbol{\xi}$ 

$$\nabla \mathbf{v} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

# 3.11 Insufficiency of $\varepsilon_R$ as classifying inflow/outflow vortices

 $\nabla v = \begin{pmatrix} \varepsilon_R & c\psi & \omega_2 \\ -\psi/c & \varepsilon_R & -\omega_1 \\ 0 & 0 & \varepsilon_a \end{pmatrix}$   $\lambda r_1, \lambda r_2 = \varepsilon_R \pm |c - 1/c|\psi/2$ Radial flow in  $\mathcal{P}$  (in vortical flow):  $\frac{\lambda r_1 + \lambda r_2}{2} = \varepsilon_R \quad \text{(invariant)}$ 

 $V_{r}e_{r} = \sum_{r}^{r} V_{r}e_{r} = \sum_{r}^{$ 

 $\varepsilon_R$  is <u>difficult to distinguish</u> complete inflow(outflow) or mixed flow with both inflow and outflow.

Fig. 3.5: radial flow with same complex eigenvalues ( $\varepsilon_R$ ,  $\psi$ ) = (-1, 2) but different *c* where (a) *c*=0.8 ( $\sigma$ = 0.9), and (b) *c*=2.5 ( $\sigma$ = -1.9). (same as Fig. 3.2) (Nakayama, *Fluid Dyn. Res.*, 2014)<sup>21</sup>

# 3.12 example of inflow vortices classified by $\varepsilon_R$ (<0)

- > An example in an isotropic homogeneous turbulence:
- about 85% of inflow vortices classified by *ε<sub>R</sub>* < 0 are vortices with mixed inflow and outflow.</li>
   This fact gives an important feature in the effect of vortex stretching.



Fig.3.6 JPDF (Joint Probability Density Function) of  $\sigma$  and  $\phi$  in terms of  $\varepsilon_R < 0$  (average-inflow vortices).

# 3.13 Relationships between swirlity and vortical flow symmetry

(vortices in an isotropic homogeneous turbulence)
 <u>\$\phi\$ and \$c\$ have high correlation</u>.
 flow symmetry is important for

development of a vortex.





23

(ref. e.g., Nakayama, Phy. Rev. Fluids, 2017)

# 3.14 animation of a vortex

(a vortex in an isotropic homogeneous turbulence)



![](_page_23_Figure_3.jpeg)

![](_page_23_Picture_4.jpeg)

Fig. 3.9 : animation of a vortex with contours of  $\phi$  and c.

When c increases, a new contour of  $\phi$  (intense  $\phi$  region) appears.

### 4. Physical feature of a vortex

Important physical features of vortex associated with the topology:
Pressure minimum
vortex stretching

Vortex space facilitates the analysis of these features.

### 4.1 Pressure minimum by topology

We focus on the Hesse matrix H = [h<sub>ij</sub>] = [-p,<sub>ij</sub>/ρ] of the pressure by differentiating the Navier-Stokes equation,
 discarding unsteady strain and viscous terms, to estimate the pressure minimum derived from the vortical motion<sup>\*1</sup>.

$$H = (AA + {}^{t}A A)/2 \quad (A = \nabla v)^{*2}$$

 $\square$  the pressure min. by vortical flow in  $\mathcal{P}$  should be estimated.

![](_page_25_Figure_4.jpeg)

![](_page_26_Figure_0.jpeg)

## 4.3 on universal definition

![](_page_27_Picture_1.jpeg)

- The topology in *P* and resulting pressure minimum is related.
  The vortex definition with this criteria unifies (satisfies) the major vortex definitions (Nakayama et al., *Fluid Dyn. Res.*, 2014):
  - 1. △ definition (Chong et al., *Phy. Fluids*, 1990):
     ∇ v has complex eigenvalues
  - 2. *Q* definition (Hunt et al., CTR-S88 1988):
     vorticity exceeds rate of strain
     3-dim pressure Laplacian
  - 3. λ<sub>2</sub> definition (Jeong et al., *J. Fluid. Mech.*, 1995):
    existence of pressure min. plane by vortical flow

approaching the universal definition of a vortex...

### 4.4 vortex stretching

 strengthening the vorticity with strain (compression/tension)
 strain: the rate of strain tensor (its eigenvalues (eigenvectors)) s<sub>ij</sub> = (∂v<sub>i</sub>/∂x<sub>j</sub> + ∂v<sub>j</sub>/∂x<sub>i</sub>)/2
 vortex stretching rate δ, i.e., the rate of generation of enstrophy |ω|<sup>2</sup> is expressed as (Jimenez, J. Fluid. Mech., 1993):
 δ = ω<sub>i</sub> s<sub>ij</sub> ω<sub>j</sub> / |ω|<sup>2</sup> = ω<sub>i</sub> s<sub>ij</sub> ω<sub>j</sub> / (ω<sub>i</sub> ω<sub>i</sub>)

However, eigenvectors of  $s_{ij}$  are not identical to the swirl plane

### 4.5 formulation of vortex stretching

In the vortex space, rotating the bases in *P* in accordance with ζr<sub>i</sub> (eigenvector of λr<sub>i</sub>) (rotating π/4) gives :

 $\delta = \{ \lambda_{r_1} \underline{\omega}_1^2 + \lambda_{r_2} \underline{\omega}_2^2 + \lambda_{r_3} \omega_3^2 \} / (\omega_i \omega_i)$   $\underline{\omega}_1 = (\omega_1 - \omega_2) / \sqrt{2}, \ \underline{\omega}_2 = (\omega_1 + \omega_2) / \sqrt{2}$  $(\lambda_{r_3} = \varepsilon_a, \ \omega_3 = -(c+1/c)\phi)$ 

![](_page_29_Figure_3.jpeg)

analyse vortex stretching by <u>decomposition of vorticity</u> <u>components parallel and normal to P</u>.

■  $0 < \sigma$ : increases effectively both swirl and axis orthogonality ■  $\sigma < 0$ : increase swirl but decreases the orthogonality >  $\lambda r_i$  and  $\sigma$  specify the characteristic of the stretching

### 4.6 effect of vortex stretching

- inflow in all directions effectively strengthens swirl (ω<sub>3</sub>), and increases orthogonality of a vortical axis.
- This characteristic is specified by sourcity.

 Vorticity in the vortex stretching can be characterized by <u>decomposition of</u> <u>vorticity in terms of components</u> <u>parallel and normal to *P*.
</u>

![](_page_30_Figure_4.jpeg)

Fig. 4.2: each term of the vortex stretching in average-inflow vortices ( $\varepsilon_R < 0$ ), non-dimensionalized by the root mean square value of the vorticity in an isotropic homogeneous turbulence. 31

(ref.: Nakayama, Phy. Rev. Fluids, 2017)

# 4.7 characteristic of vortex stretching

$$\delta = \lambda_{r_1} \underline{\omega}_1^2 + \lambda_{r_2} \underline{\omega}_2^2 + \lambda_{r_3} \omega_3^2$$

A life of a vortex in an isotropic homogeneous turbulence.

![](_page_31_Figure_3.jpeg)

Fig. 4.3 : A life of an average inflow vortex ( $\varepsilon_R < 0$ ) in an isotropic homogeneous turbulence (generation  $\rightarrow$  development  $\rightarrow$  decay).

□  $0 < \sigma$ : increases effectively both swirl and axis orthogonality □  $\sigma < 0$ : increase swirl but decreases the orthogonality >  $\lambda r_i$  and  $\sigma$  specify the characteristic of the stretching

![](_page_32_Figure_0.jpeg)

### 5.2 Eigen-vortical-axis Line

ζ indicates an axis direction in terms of the invariant local topology, and can be defined in vortical region V where 0 < φ. (∇v has complex eigenvalues)</li>
 Define a vortical axis along ζ
 Eigen-vortical-axis Line α(x) (α = [α<sub>i</sub>] (i=1,2,3)) in V such that

$$\frac{d\alpha_1}{\zeta_1} = \frac{d\alpha_2}{\zeta_2} = \frac{d\alpha_3}{\zeta_3}$$

![](_page_33_Figure_3.jpeg)

![](_page_33_Figure_4.jpeg)

(5.3 Relationship between eigen-vortical-axis line and vorticity line) <Question> (maybe later)

What is the relationships between vorticity vector and eigen-vortical-axis?

The relationships between  $\zeta$  and  $\omega$  can be formulated, relating to the topology, but they are not simple.

#### 5.4 Analysis of eigen-vortical-axis/vorticitiy lines in isotropic homogeneous decaying turbulence

Pseudo Spectral Method with phase-shift method

![](_page_35_Figure_2.jpeg)

Fig.5.1: Vortical regions (contour of  $\phi = 2$ ) and eigen-vortical-axis line (bold line)/ vorticity line (narrow line) in a sub-domain  $(133\eta \times 133\eta \times 43\eta)$ . ( $\phi_a$ :  $\phi$  in axes)

36

# 5.5 feature of a traced axis –consistency with vortical core region

![](_page_36_Figure_1.jpeg)

Fig. 5.2: Zoomed vortical regions ( $\phi$ =2) and vortical axes traced by a eigen-vortical-axis line (bold line) and a vorticity line (narrow line), where the color in the axes shows (a)  $\phi$  ( $\phi_a$ ) and (b) c ( $c_a$ ) in the axes.

#### 5.6 another example of traced axes

• eigen-vortical-axis line (EVAL) passes the core region.

![](_page_37_Figure_2.jpeg)

EVAL follows the core region of a vortex. A vorticity line that passes point A deviates the core region of a vortex with low swirlity.

Fig. 5.3: Vortical regions (contours where  $\phi = 2$ ), and an eigenvortical-axis line (bold line) and two vorticity lines (narrow lines) in a sub-domain (Kolmogorov length  $\eta = 0.012$ ).

### 5.7 pressure minimum feature of a traced axis

 eigen-vortical-axis line has also pressute minimum, while a vorticity line does not have this feature.

![](_page_38_Figure_2.jpeg)

![](_page_38_Figure_3.jpeg)

Fig. 5.4: Vortical axes traced by eigen-vortical-axis line (bold line) and vorticity line (narrow line). 39

#### 5.8 Bundle features of eigen-vortical-axis/vorticitiy lines in isotropic homogeneous turbulence

eigen-vortical-axis line tends to concentrate and have intense swirlity in the core region of vortices.

![](_page_39_Figure_2.jpeg)

## 6. Conclusion

![](_page_40_Picture_1.jpeg)

- 1. Eigenvalues of the velocity gradient tensor are insufficient
  - to specify the detail flow topology
  - to relate the topology to physical characteristics of a vortex
- 2. Pressure minimum in the swirl plane and vortex stretching are specified by the detail topological quantities.
- 3. Vorticity should be decomposed into components parallel and normal to the swirl plane for specifying the vortex stretching.

## (6. Conclusion)

- 4. A vortical axis with intense swirling might be along the local flow axis.
- 5. Vorticity and rate of strain tensor are important quantities, however, the behavior of present topological quantities contributes the vorticity.
- 6. The present topological approach enables us to watch flow with a new sight, i.e., detail flow characteristics.