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1. Introduction 
1.1 Vortices in flow


1.  Vortices play important roles in turbulent flows 
and influences performance or soundness of facility, 
system or machinery in various engineering field, such 
as power plants, wind turbines, or aviation. 

2.  Identification of a vortex with its intensity is important, 
and clarifying the feature and mechanism of the vortex is 
necessary. 

3.  No universal definition has been established, and 
existence of vortices depends on an applied definition.  

(https://www.nrel.gov） 
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1.2 On vortex definition

1.  Stream line is not appropriate because it is not Galilei 

invariant (depending on the inertial coordinate system). 
2.  Vorticity is difficult to distinguish the geometries 

(topologies) between shear and vortical (swirling) flows. 
3.  In many vortex definitions proposed, popular definitions 

frequently used are on local approach specified by the 
velocity gradient tensor ∇v such as the local flow 
geometry (topology) or pressure minimum feature*.  

4.  the complex eigenvalues of ∇v that specify the invariant 
vortical flow have greatly contributed in the vortex 
definitions (e.g., Δ definition) and classification of flows. 

(*: Chong et al., Phy. Fluids, 1990, Hunt, STR-88, 1988, Jeong et al., J. Fluid. Mech., 1995) 

(Garth et al., 2005) 
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1.3 Questions on topology of a vortex

It has been desired to clarify the following questions: 
1.  Behind frequent application of the eigenvalues of ∇v, what 

is the clear interpretation of the eigenvalues of ∇v ? 
(Is the classification correct?) 

2.  No identification of flow symmetry* ? 
3.  How are the pressure minimum in the vortex definitions 

and vortex stretching related to the local flow topology? 
4.  What is the universal definition of a vortex or vortical axis? 
These items are now being clarified with a new aspect…  

(*: Blackburn et al., J. Fluid. Mech., 1996) 



The local flow around a point can be expressed as: 
 Taylor expansion of velocity neglecting higher order： 

                              　(summation convention is applied) 
 Eigenvalues εi and eigenvectors ξi (i=1,2,3) of ∇v specify the 

local flow geometry in terms of the Galilei invariant.  
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2. Local flow topology and quantities 
2.1 flow specified by ∇v


d
dt
xi =

!vi
!x j

x j

x = e
! jt

j=1

3

! !
j

  a linear combination of flows along 
  ξi (i=1,2,3), in the directions and with 
  intensities according to εi . 

(Garth et al., 2005) 



ζ 
 ξpl × ηpl 

 ξpl 

ηpl 
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2.2 Invariant vortical flow geometry

If ∇v has complex conjugate and real eigenvalues, εR ± i ψ and εa, and 

their respective eigenvectors ξpl ± i ηpl  and ζ,

  Flow trajectory*: x = 2exp(εRt){cos(ψt)ξpl – sin(ψt)ηpl}+ exp(εat)ζ

  Vortical flow 

Fig. 2.1: vortical flow topology (εR< 0) 


Flow swirls in ξpl-ηpl  
plane (swirl plane P ).


( *: Nakayama, Fluid Dyn. Res., 2014)  

Flow proceeds 
(converges) along  ζ. 

 εR < 0 
Inflow 
vortex	



(Wallace, Phy. Fluids 2009)


 0 < εR 
outflow 
vortex	



Inflow (converge) or 
outflow (diverge) 
according to εR .




ζ 
 ξpl × ηpl 

 ξpl 

ηpl 
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2.3 Questions may arise…

  This flow classification has been applied in several turbulent 

flows and in the major vortex definitions since around 1990 . 
   However….. 

(Fig. 2.1: vortical flow 
 topology (εR< 0) )


 Does it swirl uniformly with constant ψ 
around a point? 
 Does it converge (inflow) or diverge 
(outflow) uniformly around a point?


 What is the physical interpretation of 
the eigenvalues?  
 How is the flow symmetry?


 x = 2exp(εRt){cos(ψt)ξpl – sin(ψt)ηpl}+ exp(εat)ζ




  We study further detail of the  
    topology in a plane. 
  local velocity:  
        v’i = (∂vi /∂xj) xj (i, j=1, 2) 
  decompose the flow into  
     (i) azimuthal flow vθ  
     (ii) radial flow vr,   
   such as: 
     v’ = vr er + vθ eθ 
      er,  eθ : unit vectors of radial and   
                 azimuthal directions 
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3. Exploring the local flow in a plane


 (x3||ζ) 

v’ = vr er + vθ eθ 
       



  vθ : expressed as a specific 
quadratic form 
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3.1 Azimuthal flow


 Qθ : unitary matrix having two real eigenvalues λθi  
and their orthogonal eigenvectors ζθi   (i=1, 2).   
  the feature of vθ : λθi specify 

x1 

x2 

     　   1   vθ  = ––– tx’ Qθ x’                |x’|  

       a21          − (a11−a22)/2   
 − (a11−a22)/2         − a12  

∇v = 

 x’ = ( x1, x2 ) 



  if λθ1 and λθ2  have the same sign 
  vθ has the same direction around a 

point 
 swirling flow 

 

10 

3.2 swirlity


Define swirlity φ *1 that represents the 
unidirectionality and intensity of vθ (λθi) 
in terms of the geometrical average. 
 　　φ := sgn(λθ1 λθ2 ) |λθ1 λθ2 |1/2 

 φ is defined in vortical/non-vortical 
flow. ⇨ applicable to prediction of a 
vortex *2
(*1: Nakayama, Fluid Dyn. Res., 2014, 

*2: Nakayama, ICTAM2016) 

Fig. 3.1: local flow and 
decomposed vθ in flow transition 
into a vortex. 0<φ in (a) and (b), 
and  0<φ  in (c), i.e., vortical flow.




 What is the physical interpretation of complex eigenvalues 
(imaginary part ψ) of ∇v ? 
  how to relate ψ (eigenvalues of 3-dim ∇v)  to flow 
topology in a plane... 
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<Question>


              a11   a12   a13  
 ∇v =    a21   a22   a23 
              a31   a32   a33 

 x = 2exp(εRt){cos(ψt)ξpl – sin(ψt)ηpl}+ exp(εat)ζ




  3-dim ∇v has at least one real 
  eigenvalue εa and real eigenvector ζ. 
 We define a coordinate system (xi) 

where the x1-x2 plane with two 
orthonormal bases is an arbitrary 
plane linear independent of (non-
parallel to) ζ (set as x3 axis): 

 ∇v in this coordinate system： 
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3.3 Relationships between three dimensional 
      eigenvalues and swirlity


 (x3||ζ) 

              a11   a12   0 
 ∇v =    a11   a12   0 
              a31   a32  εa 

v’ = vr er + vθ eθ 
       



 In this coordinate system, it is 
mathematically proven that 
 0 < |λθ1 λθ2 | i.e., 0 < φ  

(topological condition) 
 ∇v has complex eigenvalues*  

(algebraic condition) 
are equivalent. φ is expressed as; 

    ψ  = φ  and φ = Q － 3εa2 

 ψ in complex eigenvalues of ∇v : 
geometrical average of vθ.  

  swirlity is invariant independent of the 
arbitrary plane (non parallel to ζ axis). 
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3.4 Invariance of swirlity


 (x3||ξa) 

Note: φ is defined in 
vortical/non-vortical 
flow. 


(Nakayama, Fluid Dyn. Res., 2014)  

* Δ = (Q/3)3 + (R/2)2 > 0 
(Q, R: the 2nd and 3rd  
invariants of ∇v) 
  Δ definition(Chong et al., 

Phy. Fluids, 1990)  



14 

3.5 radial flow vr


   Qr : unitary matrix having two real 
eigenvalues λri  and their orthogonal 
eigenvectors ζri   (i=1, 2).   

Fig. 3.2: decomposed vr where 
 (left) 0<σ  (λri <0) and 
 (right) σ <0 (with same 
complex eigenvalues of ∇v).


  similar to vθ, vr is expressed 
 as a specific quadratic form: 

 

     　   1   vr  = ––– tx’ Qr x’                    |x’|  
       a11            (a21+a12)/2   
 (a21+a12)/2         a22  

∇v = 



  if λr1 and λr2 have the same sign 
        (0 < |Qr |, Qr: unitary) 
  vr has the same direction around  

a point 
 complete inflow from all directions 
   λr1, λr2  < 0 
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3.6 sourcity


(Fig. 3.2: decomposed vr where 
 (left) 0 < σ  (λri < 0) and 
 (right) σ  < 0 (with the same  
complex eigenvalues of ∇v).)


Define sourcity σ *1 that represents the 
unidirectionality and intensity of vr  (λri) 
in terms of the geometrical average 
      σ := sgn(λr1 λr2) |λr1 λr2|1/2 

(Nakayama, Fluid Dyn. Res., 2014) 
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3.7 another invariant of ∇v 

If ∇v (=A) has conjugate complex eigenvalues (εR ± iψ),   
 Eigenequation for the complex eigenvalues:  
          A(ξpl ± iηpl) = (εR ± iψ) (ξpl ± iηpl)　 
            (A = [aij ] = [ ∂vi /∂xj ]) 

  differently from the real eigenvector,  ξpl  and ηpl are 
    restricted in terms of the ratio of their norms (lengths). 
  c = |ξpl| / |ηpl| 
  c is an invariant quantity. 
  note that ξpl  and ηpl  can be set as ξpl⊥ηpl. 



   c has not been considered in the topological analysis.  
  the topology depends on c, and c represents the flow symmetry. 
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3.8 symmetry quantity of vortical flow 


ξpl
 ξpl
ξpl


ηpl
ηpl
 ηpl


c = 1/4
 c = 1/2
 c = 5/6


 c = 1 
 axisymmetric


 c = 0.5 
 elliptic


 c ≈ 0 
 much skewed


 c


Fig. 3.3: flow geometry in ξpl-ηpl plane with same complex eigenvalues (εR, ψ) = (-1, 2 )
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3.9 vortex space 

 We define “vortex space” V where the 

orthonormal bases are parallel to: 
      ξpl , ηpl　(ξpl⊥ηpl), ξpl×ηpl  

 ∇v in the coordinate system of V： 
 



               εR    cψ   ω2    
∇v =   –ψ/c   εR  –ω1 
                0     0     εa 

ω1 = (ω, ξpl /|ξpl|) 
ω2 = (ω, ηpl /|ηpl|) 
ω3 = – (c+1/c)ψ   (ω3 : eigen-helicity-
density (Zhang et al., Phy. Fluids, 2006) 

 ξa   n=ξpl × ηpl 

 ξpl 

ηpl 
ω ω 

 P	



The vortex space facilitates to investigate：

  detail topology 
  physical features such as pressure minimum or vortex stretching 

(Fig. 2.1: vortical flow  
topology (εR< 0) )
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3.10 Flow feature in swirl plane and  
      physical quantities

 characteristics of vr and vθ in P ： 
     λr1, λr2  = εR ± |c–1/c|φ/2 
     λθ1, λθ2 = – cφ , – φ/c 
  swirlity and sourcity 
      φ  = ψ = |λθ1 λθ2 |1/2 
      σ  = sgn(α) | α |1/2 

      α = εR2 – (c–1/c)2 φ 2 /4 

(Nakayama, Fluid Dyn. Res., 2014) 

 

Fig. 3.4: flow geometry in P with same complex 
eigenvalues (εR, ψ) = (−1, 2 ) but different c where 
(a) c=0.8 (σ = 0.9), and (b) c=2.5 (σ = −1.9). 


 c = 0.8 

 c = 2.5 



  What is the physical interpretation of complex eigenvalues 
(real part εR ) of ∇v ?  
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<Question>


              a11   a12   a13  
 ∇v =    a21   a22   a23 
              a31   a32   a33 

 x = 2exp(εRt){cos(ψt)ξpl – sin(ψt)ηpl}+ exp(εat)ζ
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3.11 Insufficiency of εR as classifying  
     inflow/outflow vortices


  Radial flow in P (in vortical flow): 
     　 λr1 + λr2   　　––––––––– = εR        (invariant)                2  
    εR  is difficult to distinguish 

complete inflow(outflow) or mixed  
flow with both inflow and outflow. 

  

Fig. 3.5: flow with same complex 
eigenvalues (εR, ψ) = (−1, 2 ) but 
different c where (a) c=0.8 (σ = 0.9), 
and (b) c=2.5 (σ = −1.9). 
 (same as Fig. 3.2)

(Nakayama, Fluid Dyn. Res., 2014) 

               εR    cψ   ω2    
∇v =   –ψ/c   εR  –ω1 
                0     0     εa 
 λr1, λr2  = εR ± |c–1/c|ψ/2 
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3.12 example of inflow vortices 
        classified by εR (<0)


  An example in an isotropic 
homogeneous turbulence:  

 
   about 85% of inflow vortices 

classified by εR < 0 are vortices 
with mixed inflow and outflow. 

  This fact gives an important feature 
in the effect of vortex stretching. 

  

(Nakayama, Phy. Rev. Fluid, 2017) 

 

Fig.3.6 JPDF (Joint Probability 
Density Function) of σ and φ in 
terms of εR < 0 (average-inflow 
vortices). 



3.13 Relationships between swirlity and vortical 
flow symmetry


Fig.3.8 JPDF of  c and φ. Fig. 3.7 : contours of φ and c. 

 (vortices in an isotropic homogeneous turbulence) 
  φ and c have high correlation.  
  flow symmetry is important for 

development of a vortex. 
 

φ and c 
codevelop  

or  
codecay.


23 (ref. e.g., Nakayama, Phy. Rev. Fluids, 2017) 
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3.14 animation 
 of a vortex


 (a vortex in an  
isotropic homogeneous 
turbulence) 

⇨⇨
 
  
  


When c increases, a new contour of φ 
(intense φ region) appears.


Fig. 3.9 : animation of a vortex 
with contours of φ and c. 
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4. Physical feature of a vortex


Important physical features of vortex associated with the 
topology: 
 Pressure minimum  
 vortex stretching 
 
Vortex space facilitates the analysis of these features. 
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4.1 Pressure minimum by topology

 We focus on the Hesse matrix H = [hij] = [–p,i j/ρ] of the 

pressure by differentiating the Navier-Stokes equation,  
 discarding unsteady strain and viscous terms, to estimate the 

pressure minimum derived from the vortical motion*1.  
        H =  (AA+ tAtA)/2   (A=∇v ) *2 

  the pressure min. by vortical flow in P should be estimated.


(*1: Jeong et al., J. Fluid Mech., 1995, *2: Nakayama et al., Fluid Dyn. Res., 2014)




pressure feature in P pressure minimum plane
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4.2 Pressure minimum 
in swirl plane


  In vortex space H  is expressed as: 

      H =


Pressure minimum： λp1, λp2 < 0   
       condition         ➡ c|εR| < ψ  (ψ = φ) 

Fig. 4.1: flow geometry in P and  
pressure minimum feature where 
 (εR, ψ) = (−1, 2) , and (a) c=1.2,  
and (b) c=0.4. 


By rotating the bases in P  
 in accordance with the 
 orthonormal eigenvectors 
 of the Hessians λpi  in P.


               εR2φψ2      (c–1/c)εΡψ   ι1 
 　        (c–1/c)εRψ      εR2–ψ2       ι2 
                 ι1                           ι2                 εa2 

 c relates to the pressure 
minimum in P.


             λp1    0     ι1’ 
 　 ➡     0     λp2    ι2’ 
             ι1’        ι2’     εa2 

 λpi = (εR
2–ψ2) ± |(c–1/c)εR|ψ  c = 0.8  c = 0.4 
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4.3 on universal definition

 The topology in P and resulting pressure minimum is related.  
 The vortex definition with this criteria unifies (satisfies) the 

major vortex definitions (Nakayama et al., Fluid Dyn. Res., 2014) : 

1.   Δ definition  (Chong et al., Phy. Fluids, 1990) : 
  ∇v has complex eigenvalues 

2.   Q definition (Hunt et al., CTR-S88 1988)： 
 vorticity exceeds rate of strain 
 3-dim pressure Laplacian 

3.   λ2 definition (Jeong et al., J. Fluid. Mech.,1995)： 
 existence of pressure min. plane by vortical flow 

 approaching the universal definition of a vortex...  
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4.4 vortex stretching

  strengthening the vorticity with strain (compression/tension) 
  strain: the rate of strain tensor (its eigenvalues (eigenvectors)) 

     sij = ( ∂vi /∂xj + ∂vj /∂xi  ) / 2     
   vortex stretching rate δ, i.e., the rate of generation of enstrophy 

 |ω|2 is expressed as (Jimenez, J. Fluid. Mech., 1993):  

    δ = ωi sij ωj  / |ω|2 
       = ωi sij ωj  / (ωi ωi ) 

 However, eigenvectors of 
sij are not identical to the 
swirl plane
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4.5 formulation of vortex stretching

 In the vortex space, rotating the bases in P   

in accordance with ζri (eigenvector of λri) 
(rotating π/4) gives :  

    δ = { λr1ω1
2

  + λr2ω2
2 + λr3ω3

2 }/ (ωi ωi ) 
   ω1 = (ω1 – ω2)/√2, ω2 = (ω1 + ω2)/√2 
   (λr3 =εa, ω3 = – (c+1/c)φ )           

      

 analyse vortex stretching by decomposition of vorticity 
components parallel and normal to P .  
  0 < σ : increases effectively both swirl and axis orthogonality 
  σ < 0 : increase swirl but decreases the orthogonality 
 λri and σ specify the characteristic of the stretching




Fig. 4.2: each term of the vortex stretching in 
average-inflow vortices (εR<0), non-dimensionalized 
by the root mean square value of the vorticity in an 
isotropic homogeneous turbulence. 
 31 

4.6 effect of vortex stretching

  inflow in all directions effectively 

strengthens swirl (ω3 ), and 
increases orthogonality of a 
vortical axis. 

  This characteristic is specified by 
sourcity. 

  Vorticity in the vortex stretching can 
be characterized by decomposition of 
vorticity in terms of components 
parallel and normal to P .   

(ref.: Nakayama, Phy. Rev. Fluids, 2017)


 

      

complete 
inflow


 0 <  σ  

average 
inflow


σ < 0


(λr3ω3
2) 

(λr1ω1
2) (λr2ω2

2) 
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4.7 characteristic of 
vortex stretching


                  

A life of a vortex in an isotropic homogeneous turbulence.  

δ =  λr1ω1
2

  + λr2ω2
2 + λr3ω3

2 
 

Fig. 4.3 : A life of an average inflow vortex （εR<0） in an isotropic 
homogeneous turbulence (generation ➡development ➡decay ).  

  0 < σ : increases effectively both swirl and axis orthogonality 
  σ < 0 : increase swirl but decreases the orthogonality 
 λri and σ specify the characteristic of the stretching




ζ 
 ξpl × ηpl 

 ξpl 

ηpl 
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5. A definition of a vortical axis 
5.1 Focusing on the last eigenvector of ∇v 


We go back to the local flow topology where ∇v has complex 
conjugate and real eigenvalues, εR ± iψ and εa, and their 
respective eigenvectors ξpl ± i ηpl  and ζ,


 Flow trajectory: 
     x = 2exp(εRt){cos(ψt)ξpl – sin(ψt)ηpl}+  exp(εat)ζ


 
 We focus on a real eigenvector.


(Fig. 2.1: vortical flow  
  topology (εR< 0) )


Flow proceeds (converges) along  ζ. 

Flow in P has been examined. 
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5.2 Eigen-vortical-axis Line

  ζ indicates an axis direction in terms of 

the invariant local topology, and can be 
defined in vortical region V where 
 0 < φ. (∇v has complex eigenvalues) 

  Define a vortical axis along ζ 
  Eigen-vortical-axis Line α (x)  

(α =[αi] (i=1,2,3) ) in V such that 

d!
1

"
1

=
d!

2

"
2

=
d!

3

"
3

ζ 
 ξpl × ηpl 

 ξpl 

ηpl 

vortical 
region	



ζ




  What is the relationships between vorticity vector and 
eigen-vortical-axis?  
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<Question>  (maybe later)


The relationships between 
 ζ and ω can be formulated, 
 relating to the topology,  
 but they are not simple. 

(5.3 Relationship between eigen-vortical-axis line 
and vorticity line)




  Pseudo Spectral Method with phase-shift method 

5.4 Analysis of eigen-vortical-axis/vorticitiy lines 
in isotropic homogeneous decaying turbulence 

Fig.5.1: Vortical regions (contour of φ = 2) and eigen-vortical-axis line (bold line)/ 
        vorticity line (narrow line) in a sub-domain (133η×133η×43η). (φa: φ in axes)


φa


φ
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5.5 feature of a traced axis –consistency 
       with vortical core region  

Fig. 5.2: Zoomed vortical regions (φ =2) and vortical axes traced by a eigen-vortical-axis 
line (bold line) and a vorticity line (narrow line), where the color in the axes shows (a) φ 
(φa) and (b) c (ca) in the axes. 

 a vorticity 
line deviates 

the core 
regon of a 
vortex and 

symmetry of 
vortical flow 
decreases.  


 eigen-
vortical-axis 
line proceeds 
in the core 
region of a 
vortex, and 

has high 
swirlity of 

vortical flow.  


φ
φ


φa
 ca
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5.6 another example of traced axes 

Fig. 5.3: Vortical regions (contours where φ = 2), and an eigen-
vortical-axis line (bold line) and two vorticity lines (narrow 
lines) in a sub-domain (Kolmogorov length η= 0.012). 


  eigen-vortical-axis line (EVAL) passes the core region. 

   (a)


φa


φ


 EVAL follows the core region of 
a vortex.  
A vorticity line that passes point 
A deviates the core region of a 
vortex with low swirlity. 
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5.7 pressure minimum feature of a traced axis 

Fig. 5.4: Vortical axes traced by eigen-vortical-axis  
        line (bold line) and vorticity line (narrow line). 

 eigen-vortical-axis line has 
also pressute minimum, 
while a vorticity line does 
not have this feature.


0 < λp2


 
φ


λp2
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  eigen-vortical-axis line tends to concentrate and have intense 
swirlity in the core region of vortices. 

5.8 Bundle features of eigen-vortical-axis/vorticitiy 
lines in isotropic homogeneous turbulence 

Fig. 5.5: bundle features of eigen-vortical-axis line (left)/vorticity line (right).  
(φα, ωa : φ  and  |ω|  in axes)


φa
φa


φ
φ
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6. Conclusion

1.  Eigenvalues of the velocity gradient tensor are insufficient 

–  to specify the detail flow topology 
–  to relate the topology to physical characteristics of a 

vortex 
2.  Pressure minimum in the swirl plane and vortex stretching 

are specified by the detail topological quantities. 
3.  Vorticity should be decomposed into components parallel 

and normal to the swirl plane for specifying the vortex 
stretching. 
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(6. Conclusion)


4.  A vortical axis with intense swirling might be along the 
local flow axis. 

5.  Vorticity and rate of strain tensor are important quantities, 
however, the behavior of present topological quantities 
contributes the vorticity. 

6.  The present topological approach enables us to watch flow 
with a new sight, i.e., detail flow characteristics. 


