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1. Introduction

How is Fluid mechanics different from “Classical” mechanics?

• Infinite degree of freedom

• Eulerian description for velocity field
(vs. Lagrangian description for particle orbit)

⇒ The partial differential equations (PDEs) for vector and scalar fields

– Mathematical methods used in classical mechanics are not directly ap-
plicable.

– It is hard to solve the PDEs even by using computers.

⇒
:::::
Linear

::::
and

:::::::
weakly

::::::::
nonlinear

::::::::
stability

:::::::
analysis (perturbation analysis)

is one of the feasible approaches.

Laminar flow Turbulent flowInstability
Dye

(Reynolds 1883)
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Outline�� ��Stability theory for Hamiltonian systems ?−→
�� ��Hydrodynamic stability theory

Based on the Hamiltonian viewpoint of fluid mechanics, the variational method is
shown to be useful for predicting stability (both theoretically and numerically).

1. Introduction
(As a typical and simple hydrodynamic stability problem, we consider)

2. Rayleigh equation — stability of inviscid parallel shear flow

3. Action-angle variables (in classical mechanics)

4. Variational stability conditions (in classical mechanics)

5. Wave action (action variable in fluid mechanics)

6. Variational stability conditions for Rayleigh equation

7. Summary
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Rayleigh equation ∼ Stability of inviscid parallel shear flow ∼

Shear flow U = U(x)ey,
Disturbance ũ = ∇[ϕ(x)eik(y−ct) + c.c.]× ez, (c ∈ C, k ∈ R)

(c− U)(ϕ′′ − k2ϕ) + U ′′ϕ = 0, ϕ(−L) = ϕ(L) = 0

(where ′ is the x-derivative)
If there exists an eigenvalue c with Im c > 0, the flow is unstable.

Kelvin-Helmholtz instability:

• One of the most classical hydrodynamic stability problem

• But, the stability condition on U(x) is still nontrivial.

U ′′(x) ̸= 0 everywhere =⇒
⇐=\ Stable (Rayleigh 1880)
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History

• 1880 Rayleigh
No inflection point (U ′′ ̸= 0) ⇒ Stable

• 1950 Fjørtoft
One inflection point xI and U ′′(U − UI) > 0 where UI = U(xI) ⇒ Stable

• 1964 Rosenbluth & Simon (Nyquist method)
In the limit k → 0,

1

U ′(U − UI)

∣∣∣∣L
−L

+

∫ L

−L

U ′′

U ′2(U − UI)
dx > 0⇔Stable

• 1969 Arnold (variational method)
δ2E is poitive or negative definite ⇒ Stable

• 1991 Barston (variational method)

• 1999 Balmforth & Morrison (Nyquist method) a necessary and sufficient condition⋆

• 2003, 2005 Lin (Tollmien’s method) a necessary condition⋆
⋆ These methods requirs a solution of Rayleigh’s equation.

• 2014 Hirota, Morrison & Hattori (variational method)
a necessary and sufficient stability condition
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General pertubation theory
Lagrangian: L[q] = L(q, q̇)

q(t) = q0(t) + ξ(t)

q0: known
::::::
solution, ξ: perturbation

Perturbed orbit

0
at equilibrium

Linearized dynamics

Three-mode coupling Four-mode coupling

・Parametric instability

・Second harmonic resonance

 etc.

・Modulational instability

・Nonlinear frequency shift

  etc.

・Linear instability

・Resonant absorption/growth

"Two-mode" coupling

Weakly nonlinear dynamics

• Analysis of ξ is, however, tedious when ξ has a large degree of freedom.

• Each mode coupling can be reduced to a “normal form” by the transformation
to action-angle variables.
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Action-angle variables in classical mechanics

:::::::
Periodic

:::::::
motion · · ·

�� ��Canonical variables (q, p) ⇒
�� ��Action-angle variables (µ, θ)

Normal form of single mode

0

= const.

Angle

Action

Energy = Frequency      Action

• Adiabatic invariance

µ ≃ const. when a parameter (such as ω) is slowly varying.

• Averaging

0

If (q1, p1) is fast oscillation,

H ≃ H0(q0, p0) + ω1(q0, p0)µ1

⇒ Averaged equation for (q0, p0)



8/27

• Instability

▷ An instability is caused by
a resonance ω1 = ω2 be-
tween positive and negative
energy modes. (Krein 1950)

H =H0 + ω1µ1 + ω2µ2

> 0 < 0

Positive energy mode Negative energy mode

0 0

Energy

increase

Energy

decreaseEquilibrium

point

▷ Negative energy mode is also destabilized by energy dissipation effect.

Ex. Precession of spinning top

∴ Signs of modal energies (called Krein signatures) are important!
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Variational stability conditions

Linear Hamiltonian system with N degrees of freedom
u = (q1, q2, . . . , qN , p1, p2, . . . , pN );{

∂tq = ∂H/∂p,
∂tp = −∂H/∂q,

⇔ ∂tu = JHu, J =

(
0 I
−I 0

)
, H =

1

2
⟨u,Hu⟩

⇔ i∂tu = Lu, L = iJH

where H∗ = H and J ∗ = −J . But, L is non-self-adjoint L∗ ̸= L.

Lyapunov stability theorem (Oberman and Kruskal 1965, Case 1965, Barston 1977)

Q := ⟨u, iJP(L)u⟩ is a constant of motion, where P is any real polynomial.

∃P and ∃ϵ > 0 s.t. Q ≥ ϵ∥u∥2 or −Q ≥ ϵ∥u∥2 ⇒ Stable

(Hint) If P(L) = L/2, then Q = H.
If P(L) = L3, iJP(L) = H(iJ )H(iJ )H is also self-adjoint.

::::
Lots

::
of

::::::::
sufficient

:::::::
stability

::::::::::
conditions· · ·What choice of P leads to a better condition?



10/27

Modal decomposition:

u =
2N∑
α=1

uαe
−iωαt =

2N∑
α=1

uαe
−iωαt

Eigenvalue problem: E(ωα)uα = E(ωα)uα = 0 where E(ω) = ωiJ −H.

Accordingly, Q is decomposed into

Q =
2N∑
α=1

P(ωα)µα with µα = ⟨uα, iJ uα⟩ = qα1
1

E1,1(ωα)

∂D

∂ω
(ωα)qα1

where µα corresponds to the action variable for a neutrally stable mode (ωα ∈ R).

• E1,1 is the (1, 1) cofactor of the matrix E .

• D(ω) = det|E(ω)| is the characteristic polynomial; D(ωα) = 0.�
�

�
Even when H = 1

2

∑2N
α=1 ωαµα is indefinite, it is possible to make Q positive

or negative definite by choosing P.
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Theorem: If a polynomial P(ω) is chosen such that P(ω)
E1,1(ω)

∂D
∂ω (ω) ≤ 0 holds for all

ω ∈ R, then
max
u

Q

|u|2
> 0 ⇔ Spectrally unstable; Im∃ωα > 0

(Necessary and sufficient condition)

∵ Q ≤ 0 for all neutrally stable modes
Q ≷ 0 only for growing (Imωα > 0) and damping (Imωα < 0) modes

• A trivial choice is P(ω) = −E1,1(ω)∂D∂ω (ω). But, this choice is not practically
useful because D(ω) is needed to construct Q.

• What is interesting here is that

Number of unstable eigenvalues (Imωα > 0) of the non-self-adjoint L

⇕ one to one relation

Number of positive eigenvalues of the self-adjoint Q where Q = ⟨u,Qu⟩
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Example
∂2

∂t2

(
q1
q2

)
+2

(
0 −ωL

ωL 0

)
∂

∂t

(
q1
q2

)
= ω2

0

(
q1
q2

)
Coriolis force Potential force

An instability is caused by resonance between a positive energy mode
and a negative energy mode.

0

growing

damping

0

0

D(ω) = ω4 − 2(2ω2
L − ω2

0)ω
2 + ω4

0

E1,1(ω) = ω2 + ω2
0

By choosing P(ω) = −(ω2+ω2
0)ω(ω

2−2ω2
L+ω2

0), we obtain a necessary
and sufficient condition as maxQ/∥u∥2 > 0 ⇔ Unstable.
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Wave action theory for fluid (mode ⇒ wave)

r r0 0

Global

eigenmode

Singular

eigenmode

Vortex

tube

�� ��Uniform background
· Plane wave: A exp(ik · x− ωt)
· Dispersion relation: D(ω,k) = 0

· Wave action =
∂D

∂ω
(ω,k)|A|2 (Auer et al. 1958)�� ��Weakly non-uniform background (short wavelength limit)

· Wave packet: A(x) exp(ik · x− ωt),
· Local dispersion relation: D(ω,k,x) = 0

· Wave action density =
∂D

∂ω
(ω,k,x)|A(x)|2

⇒ Wave-kinetic theory & Weak turbulence theory
(Stix 1962, Sagdeev & Galeev 1969)�� ��Non-uniform background

Eigenvalue problem ⇒ discrete and
::::::::::
continuous spectra

(Differential equation)

Wave action (= action variable) is nontrivial.
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Continuous spectrum in hydrodynamic disturbance

Vorticity disturbance stretched by background shear flow U(x) (Case 1960)

• Initial condition eiky ⇒ eiky−ikU(x)t : the Doppler shift kU(x) depends on x.
⇒ Continuous spectrum {kU(x)|x ∈ R}

• “Continuum mode”
Integral of infinite number of

::::::
singular

::::::::::
eigenmodes localized on each streamline

e.g. delta functions

Since the singular function is not square integrable, it has been difficult to calcu-
late wave action (and also wave energy) for continuous spectrum.

· Van Kampen mode (Morrison & Pfirsch 1992),
· Rayleigh equation (Balmforth & Morrison 2002)
· General singular mode (Hirota & Fukumoto 2008)



15/27

Action variables for eigenmode and continuum mode

i∂tu = Lu, LJ = JL∗

Laplace transform u(t) 7→ U(Ω) = iu(0)
Ω−L , and define D−1(Ω) :=

⟨
u(0), iJU(Ω)

⟩
S =

1

4π

∫ 2π

0

⟨
u,J−1 ∂u

∂θ

⟩
dθ =

1

2πi

∮
Γ(σ+)

D−1(Ω)dΩ =
∑
n

µn +

∫
σc

µ(ω)dω

· Eigenvalues {ωn|n = 1, 2, . . . }, µn =
1

2πi

∮
Γ(ωn)

D−1(Ω)dΩ =

(
∂D

∂Ω

)−1

(ωn), (residue)

· Continuous spectrum ω ∈ σc ⊂ R , µ(ω) =
i

2π

[
D−1(ω + i0)−D−1(ω − i0)

]
. (jump)

0

Deformation
=⇒ 0

(Hirota & Fukumoto 2008)
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Rayleigh equation ∼ Stability of inviscid parallel shear flow ∼

Basic flow U = U(x)ey, Disturbance ũ = ∇[ϕ(x)e−iωt+iky + c.c.]× ez, (ω ∈ C, k ∈ R)

(c− U)(ϕ′′ − k2ϕ) + U ′′ϕ = 0, ϕ(−L) = ϕ(L) = 0

If there exists an eigenvalue c = ω/k with Im c > 0, the flow is spectrally unstable.

• (Case 1960) A continuous spectrum exists,
c = ω/k ∈ {U(x) ∈ R | x ∈ [−L,L]}.

• Sign of the energy of continuous spectrum
= Sign of UU ′′

(Balmforth & Morrison 2002, Hirota & Fukumoto 2008)

• Kelvin-Helmholtz instability emerges from a con-
tact point between positive- and negative-energy
continuous spectra.

· · · Analogous to Krein’s theory
(Hagstrom & Morrison 2011)

growing

damping

0
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Variational stability conditions

In terms of vorticity disturbance w = −∆ϕ := −ϕ′′ + k2ϕ,

i

k
∂tw = Lw where L = U − U ′′∆−1

L is non-self-adjoint (L ̸= L∗), but has a Hamiltonian property LU ′′ = U ′′L∗.

Theorem [Oberman and Kruskal 1965, Case 1965, Barston 1977]

Let P(c) be any real polynomial. Then,

Q =

∫ L

−L

w
1

U ′′P(L)wdx = const.

Therefore,

If ∃P and ϵ > 0 s.t. Q ≥ ϵ∥u∥2 or −Q ≥ ϵ∥u∥2 ⇒ (Lyapunov) Stable

⇒
::::::
What

:::
is

::::
the

:::::
best

:::::::
choice

:::
of

::::
P?
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• If U(x) has only one inflection point x = xI ,

the choice of P(c) = c− U(xI) results in

(Arnold 1966) The second variation of the energy in the inertial frame moving at
the velocity UI = U(xI) is

Q = δ2EI =

∫ L

−L

w

(
U−UI

U ′′ −∆−1

)
wdx.

The shear flow U is stable if δ2EI is either positive or negative definite.

(This includes Rayleigh-Fjørtoft’s stability criterion.)

growing

damping

0

⇒
growing

damping

0

In this frame, the energy of the continuous spectrum is negative everywhere.
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• If U(x) has multiple inflection points xIn, n = 1, 2, . . . , NI ,

the choice of P(c) =
NI∏
n=1

(c− UIn), where UIn = U(xIn), results in

(Barston 1991) The shear flow U is stable if

Q =

∫ L

−L

w
1

U ′′

NI∏
n=1

[
(U − UIn)− U ′′∆−1

]
wdx,

is either positive or negative definite.

. . . still sufficient conditions, but very close to necessary and sufficient one.
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Theorem: Assume
1) U(x) is an analytic, bounded and strictly monotonic function on [−L,L].
2) if U ′′(xI) = 0 at x = xI , then U ′′′(xI) ̸= 0.

Define the quadratic form Q by choosing P(c) = ν
∏NI

n=1(c − UIn) where either
ν = 1 or ν = −1 is chosen such that

ν

U ′′

NI∏
n=1

(U − UIn) ≤ 0 for all x.

Then,

max
Q∫

|w|2dx
> 0 ⇔ (Spectrally) Unstable

(Necessary and sufficient stability condition!)

(Hirota, Morrison, Hattori 2014)

By showing Q > 0 for some w, we can prove instability!
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Outline of the proof:
· Spectrum: Sp(L) = {cα, cα ∈ C ; Im cα ̸= 0, α = 1, 2, . . . , N}∪{U(x) ∈ R ; x ∈ [−L,L]}

(discrete) (continuous)

· Mode decomposition:

w =

N∑
α=1

(
wαe

−ikcαt + wαe
−ikcαt

)
+

∫ Umax

Umin

ŵ(c)e−ikctdc�



�
	Exponentially growing

and damping modes

�



�
	Neutrally stable

continuum mode

· Then, Q is also decomposed into

Q =

N∑
α=1

[P(cα)µα + P(cα)µα] +

∫ Umax

Umin

P(c)µ̂(c)dc

≷ 0 ≤ 0

where µα =
∫ L

−L
wαwα/U

′′dx

and sgn µ̂(c) = sgnU ′′(U−1(c)).
(Balmforth & Morrison 2002, Hirota & Fukumoto 2008)

0

0

∴ If Q > 0 for some w, there exists at least a growing eigenmode. □
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Numerical tests λ1 = maxQ/
∫
|w|2dx'

&

$

%

Example 1 U(x) = x+ 5x3 + 1.62 tanh[4(x− 0.5)], x ∈ [−1, 1]

as    decreases

-1

-0.5

0

0.5

1

0 2 4 6 8

0

0.01

0.02

-8 -6 -4 -2

0 2 4 6 8-8 -6 -4 -2

-0.02

-0.01

0

0.01

0.02

2.4
2.5
2.6
2.7
2.8
2.9

3
3.1
3.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Corollary: At the marginal stability λ1 ≃ 0, Q is non-singular (
∫
|w1|2dx < ∞).
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Example 2 U(x) = x− 0.02 + sin[8(x− 0.02)]/16, x ∈ [−1, 1]

as   decreases

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

0

0.1

0.2

-1 -0.5 0 0.5 1

-0.01

0

0.01

0.02

0.03

0.04

0.05

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Corollary: Number of positive signatures of Q corresponds to number of unstable
eigenmodes.
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5. Summary

• Using Rayleigh’s equation, we have demonstrated that the variational method
can be improved to give necessary and sufficient stability criteria.

Linearized system i∂tw = kLw Variational criterion maxQ/∥w∥2 > 0

non-self-adjoint self-adjoint

c1, c2, · · · ∈ C λ1 > λ2 > · · · ∈ R

w(x) ∈ C w(x) ∈ R

∃j, Im cj > 0 ⇔ Unstable λ1 > 0 ⇔ Unstable

singular as Im c → +0 non-singular around λ = 0

• We can determine the stability more efficiently and accurately than directly
solving the linearized equation.
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However, I have a lot of open questions.

• This variational method can calculate neither growth rates nor frequencies of
the unstable modes.

• So far, this method is not useful for systems of finite degree of freedom.

• Piecewise-linear flows are more complicated.

0

– The linear part [x1, x2] is a set of inflec-
tion points, on which the classical Krein
collision occurs.

min
xI∈[x1,x2]

max
∥w∥=1

Q|P=c−U(xI) > 0 ⇔ Ustable
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• The variational method is not always applicable to nonmonotonic shear flows,
1⃝

0

OK

2⃝

0

Impossible to make all signatures negative

• We can think of many difficult situations when multiple continuous spectra
exist. (e.g., stratified shear flow, MHD etc.)

• Smoothness of shear flow is mathematically important, but physically not.

• Is it possible to obtain an unified view of resonance among discrete modes
and continuum modes? (like the normal forms)
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