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Geophysical Flows
Outline of the program

General Conservation Laws and 2nd-Law of Thermodynamics
◮ Conservation of mass, momentum, energy
◮ Entropy

Physical understanding of oceanic and atmospheric flows
◮ geostrophic approximation and hydrostratic law
◮ Coriolis force
◮ balance gravitation and rotation : the Taylor-Proudham Theorem
◮ shallow water models
◮ stratified fluids
◮ friction forces and Ekman boundary layers

Mathematical Equations
◮ Navier-Stokes-Coriolis equations
◮ Primitive equations
◮ Ekman layers
◮ Stratified heat-conducting fluids
◮ Quasigeostrophic equations

Key Mathematical Results and Open Problems
◮ unique, global, strong solvability for large data with/without fast

rotation, periodic solutions for small/large forces, stability issues



Balance Laws for Mass, Momentum and Energy

The balance laws for mass, momentum and energy read as

∂tρ+ div(ρu) = 0 in Ω,

ρ(∂t + u · ∇)u +∇π = div S in Ω,

ρ(∂t + u · ∇)ǫ+ div q = S : ∇u − πdiv u in Ω,

u = 0, q · ν = 0 on ∂Ω.

ρ density, u velocity, π pressure, ǫ internal energy, S extra stress and
q heat flux.

This gives conservation of the total energy since

ρ(∂t + u · ∇)e + div(q + πu − Su) = 0 in Ω,

with e := |u|2/2 + ǫ energy density (kinetic and internal).

Integrating over Ω yields

∂tE(t) = 0, E(t) = Ekin(t) + Eint(t) =

∫

Ω
ρ(t, x)e(t, x)dx ,

provided q · ν = u = 0 on ∂Ω



Basic Laws from Thermodynamics
Ansatz : free energy ψ = ψ(ρ, θ).
Then ǫ = ψ + θη internal energy,

η = −∂θψ entropy,

κ = ∂θǫ = −θ∂2θψ heat capacity.

classical case, Clausius-Duhem equation reads as

ρ(∂t+u·∇)η+div(q/θ) = S : ∇u/θ−q·∇θ/θ2+(ρ2∂ρ−π)(div u)/θ in Ω.

Hence, entropy flux Φη is given by Φη := q/θ
entropy production by

θr := S : ∇u − q · ∇θ/θ + (ρ2∂ρ − π)(div u)

boundary conditions employed yield that for total entropy N we have

∂tN(t) =

∫

Ω
r(t, x)dx ≥ 0, N(t) =

∫

Ω
ρ(t, x)η(t, x)dx ,

provided r ≥ 0 in Ω.
div u has no sign, hence π = ρ2∂ρψ, Maxwell’s relation.
this leads to S : ∇u ≥ 0 and q · ∇θ ≤ 0.



Summary

Summarizing : conservation of energy and total entropy is
non-decreasing provided these conditions, Maxwell and (BC) are
satisfied, independent of special form of stress S and heat flux q

Thus, these conditions ensure thermodynamical consistency of the
model.

example : classical laws due to Newton and Fourier :

S := SN := 2µsD + µbdiv u I , 2D = (∇u + [∇u]T), q = −α0∇θ.

thermodynamically consistent if µs ≥ 0, 2µs + nµb ≥ 0 and α0 ≥ 0



Some Physics for Oceanic and Atmosheric Flows

thin spherical layer of fluid
Geostrophic and Hydrostatic Approximation

◮ first dominating force is gravity : hydrostatic law

̺ = ̺(x3), p = p0(x3) with (p0)x3 = −̺g

◮ aspect ratio ; δ = D
L

◮ Coriolis force : time for fluid with speed u to cross distance L is L/U
◮ if this time is small compared to period of rotation |Ω|−1, fluid does

not feel rotation
◮ rotation important only if Rossby number ε = U

2|Ω|L is small, realistic
range ε ∼ 0.05

◮ balance between gravity and rotation :

(Ω · ∇)u − Ω∇ · u = −
∇̺×∇p

2̺2

if δ small, then only vertical component of rotation f = |Ω| sin θ is
dynamically significant. Hence :

(fe3 · ∇)uh = −
(∇̺×∇p)h

2̺2

fe3 · uh = 0



The Taylor-Proudman Theorem and Approximations

if fluid is barotropic, then (fe3 · ∇)uh = 0

if fluid is incompressible, then (fe3 · ∇)u3 = 0

this means all 3 components of velocity are independent of x3. This
is the Taylor-Proudman theorem

specify to Coriolis force : 2̺Ω × u = −∇p − ̺ge3

δ small implies that only fe3 is dynamically significant. This yields

uh =
1

f ̺0
e3 ×∇p geostrophic approximation

̺g = −∂3p hydrostatic approximation

geostrophic approximation : balance between ∇Hp and horizontol
component of Coriolis force

hydrostatic approximation : balance between ∂3p and gravity



Departures from Geostrophy : Waves in Shallow Water

shallow layer of incompressible and inviscid fluid : fluid described by
height H : fluctuation η around refence height H0, purely horizontal
velocity u

δ small yields u · ∇(f /H0) = 0

pertubations of (η, u) yield

(ηtt + f 2η +∇ · (c20∇η))t − gf ((H0)xηy − (H0)yηx) = 0

(u1)tt + f 2u1 = −g(ηxt + f ηy )

(u2)tt + f 2u2 = −g(ηyt − f ηx)

with shallow water speed c0 = (gH0)
1/2.

consider solutions of form exp(i [σt + k1x1 + k2x2])

gravity waves : Poincaré waves : σ2 = f 2 + c20k
2

Kelvin waves : σ2 = c20k
2
1

planetary waves : Rossby waves : ...



Effects of Stratification

recall hydrostatic equilibrium :
̺ = ̺(x3), p = p0(x3) with (p0)x3 = −̺g

∂ttu3 + N2u3 = ̺−1∂t3p
′ with

N2 = −g̺−1∂3̺0 buoyancy frequency



Dissipation from viscosity

how to represent frictional forces F ?

F proportional to ∇S , S stress tensor, coefficient is viscosity ν
F
̺ ∼ νU

L2

Ekman number E : ratio between frictional force per unit mass to
Coriolis acceleration

E = νU/L2

1ΩU
= ν

2ΩL2



Influence of Boundary Conditions

so far : rotational effects studied in absence of boundaries

example : stress induced by wind on ocean surface induces so-called
Ekman transport

Ekman flow causes mass to flow horizontally into some region and out
of others

This results vertical motion, e.g. vertical motion away from boundary
in order to conserve mass

vertical velocity produced is called Ekman pumping : this velocity
distorts density field of ocean and causes wind-driven currents

also bottom friction



Equation I : Equations of Navier-Stokes with Coriolis force

Simplifications : fluid incompressible, isothermal, no hor./vertical scaling
but rotational effects

I observer in non-rotating inertial frame. Then :
(dr

dt

)

I
=

(dr

dt

)

R
+Ω× r

Thus uI = uR +Ω× r

Newton : Forces equal acceleration in inertial frame, thus
(duI

dt

)

I
=

(duI

dt

)

R
+Ω× uI

=
(duR

dt

)

R
+ 2Ω× uR +Ω× (Ω× r) +

dΩ

dt
× r

write centrifugal force as gradient : Ω× (Ω× r) = −∇ |Ω×r |2

2

ut −∆u + (u · ∇)u + 2Ω× u +∇p = f , in [0,T ] × Ω

div u = 0, in [0,T ] × Ω

u = 0, in [0,T ] × ∂Ω

u(0) = u0, in Ω



Equation II : Hydrostatic Approx. : Primitive Equations

Primitive equations are fundamental model in geophysical flows,
introduced by Lions, Temam and Wang in 1992-1993

Ma = S
2 × (0, 1), Ms =

⋃

(θ,ϕ)∈Γi
{(θ, ϕ) × (−h(θ, ϕ), 0)}

both are submanifolds of S2 × R

Riemannian metric gM on M :

gM((q, ξ), (v1,w1), (v2,w2)) = gS2(q, v1, v2)+w1w2, v1, v2 ∈ T 2
S,w1,w2 ∈ R



Primitive Equations on this manifold

scaling argument taking into account different horizontal and vertical
dimensions yields















∂tv + u · ∇v −∆v +∇Hπ = f , in M × (0,T ),
div u = 0, in M × (0,T ),

∂tτ + u · ∇τ −∆τ = gτ , in M × (0,T ),
∂zπ + 1− βτ (τ − 1) = 0, in M × (0,T ),

velocity u = (v ,w), where v = (v1, v2) denotes the horizontal
component and w the vertical one

simplifying : consider Ω = G × (−h, 0) where G = (0, 1) × (0, 1)
Boundary conditions :







∂zv = 0, w = 0, ∂zτ + ατ = 0, on Γu × (0,∞),
v = 0, w = 0, ∂zτ = 0, on Γb × (0,∞),

v , π, τ, σ are periodic on Γl × (0,∞),

where

Γu = G × {0}, Γb = G × {−h} and Γl = ∂G × (−h, 0),

and α > 0.



Isothermal Situation
In isothermal situation, primitive equations are given by

∂tv + u · ∇v −∆v +∇Hπ = f in Ω× (0,T ),

∂zπ = 0 in Ω× (0,T ), (1)

div u = 0 in Ω× (0,T ),

v(0) = a.

Ω = G × (−h, 0), where G = (0, 1)2, h > 0

System is complemented by the set of boundary conditions

∂zv = 0, w = 0 on Γu × (0,T ),
v = 0, w = 0 on Γb × (0,T ),

u, π are periodic on Γl × (0,T ).
(2)

Γu := G × {0}, Γb := G × {−h}, Γl := ∂G × [−h, 0]



Equation III : Stratified Flows

Thermal disturbance about mean state in hydrostatic balance :







∂tv + (v · ∇)v − ν∆v +∇π − Ωe3 × v = θe3 + g , in R
3 × (0,T ),

∂tθ + (v · ∇)θ − κ∆v = N2v3 + h, in R
3 × (0,T ),

div v = 0, in R
3 × (0,T ).

N bouyancy frequency

assume µ := Ω
N

fixed



Equation IV : Ekman Boundary Layers

The Navier-Stokes-Coriolis equations admits an explicit stationary
solution (uE , pE ) :

uE (x3) := (u1E (x3), u
2
E (x3), 0)

pE (x2) := −ωu∞x2

with

u1E (x3) := u∞(1− e−
x3
δ cos(x3δ ))

u2E (x3) := u∞e−
x3
δ sin(x3δ ),

where δ := ( 2ν|ω|)
1/2 thickness of boundary layer

stationary solution goes back to swedish oceanograph V. Ekman,
1905

in his honour : Ekman spiral

study here : stability properties of Ekman spiral

many more examples : quasigeostrophic equations, ...



Deterministic Perturbations

Let (u, p) be a solution of Navier-Stokes-Coriolis system in halfspace and
set

v := u − uE , q := p − pE

Then (v , q) satisfies the equation

vt −∆v + ωe3 × v + (uE · ∇)v + v3
∂uE
∂x3

+ v · ∇v +∇q = 0, x ∈ R
3
+, t > 0

div v = 0, x ∈ R
3
+, t > 0

v(t, x1, x2, 0) = 0, x1, x2 ∈ R, t > 0
v(0, x) = u0(x)

We say that uE is nonlinearly stable if above equation admits a “global
solution” v such that v(t) → 0 as t → ∞ in a certain sense.



Stochastic Perturbations

Consider stochastic analogue in layer D := T
2 × (0, b)











dut = [ν∆ut − ω(e3 × ut)− (ut · ∇)ut +∇pt ]dt + dWt

div ut = 0
ut(x1, x2, 0) = 0
ut(x1, x2, b) = e1 · ub

(Wt)t≥0 is H-valued Q-Wiener process, where H := L
2,per
σ (D)

defined on stochastic basis (Ω,F , (Ft )t≥0,P)

Consider stochastic perturbations ut of u
E
b , i.e.

vt = ut + uEb , qt = pt + pEb



Mathematical Analysis I : Navier-Stokes-Coriolis

Strategy for strong well-posedness for Navier-Stokes :

write equations of Navier-Stokes as Evolution Equation

u′(t)− Au(t) = −P [u(t) · ∇)u(t)

in Banach space L
p
σ(Ω), where

◮ A = P∆, Stokes operator
◮ P , Helmholtz projection

rewrite evolution equation as integral equation

u(t) = etAu0 −

∫ t

0
e(t−s)AP [(u(s) · ∇)u(s)]ds

solve integral equation via fixed point methods or iteration scheme

Find function space F in which iteration scheme
◮ u1(t) = etAu0
◮ un+1(t) = etAu0 −

∫ t

0
e(t−s)AP[(un(s)∇)un(s)]ds converges.

important : properties of Stokes operator and Stokes semigroup



Unique, Strong solutions for Equations of Navier-Stokes

Assume Ω ⊂ R
3 bounded, ∂Ω smooth

Fujita-Kato : if either u0 ∈ D(A)1/4 or interval of existence for T is
sufficiently small, then there exists a unique, strong solution on [0,T ).

in particular : L2-situation : u0 ∈ Ḣ1/2

Extension of iteration schema on scaling invariant function spaces

key results by Y. Giga ’86, T. Kato : u0 ∈ L
p
σ(Ω) for p ≥ 3

Cannone-Meyer : Well-posedness for u0 ∈ B
−1+3/p
p,∞ (R3)

Koch-Tataru : Well-posedness for u0 ∈ BMO−1(R3)

Bourgain-Pavlovic : Ill-posedness for u0 ∈ B−1
∞,∞(R3), i.e. solution

operator u0 7→ u(t) is not continuous with respect to ‖ · ‖
B−1
∞,∞

global strong solution provided n = 2



Navier-Stokes-Coriolis

Recall

ut −∆u + (u · ∇)u +Ωe3 × u +∇p = f , in [0,T ]× R
3

div u = 0, in [0,T ]× Ω

u(0) = u0, in Ω

Babenko, Mahalov, Nikolenco : pioneering result on global
well-posedness for large data provided Ω is large enough

global well-posedness result Chemin, Desjardins, Gallagher, Grenier :

let u0 ∈ H1/2(R3) with div u0 = 0. Then exists Ω0 > 0 such that for
all Ω ≥ Ω0 the (NSC)-equation admits a unique, global mild solution

surprising : no smallness condition for u0

proof relies on dispersive estimates for linear semigroup etASCE

etASCE f = e
iΩt

R3

∆1/2 [et∆(I+R)f ] + e
−iΩt

R3

∆1/2 [et∆(I−R)f ]



Strichartz Estimates by Koh, Lee, Takada

Let 2 ≤ q ≤ ∞, 2 ≤ r <∞ satisfy 1/q + 1/r ≤ 1/2. Then

‖e
iΩt

R3

∆1/2 f ‖Lq(0,∞);Lr (R3)) ≤ C |Ω|−1/q‖f ‖H3/2−3/r

Remark : no smoothing in spatial variable

Further results : global solutions uniform in Ω : u0 ∈ FM−1
0 (R3),

u0 ∈ H1/2(R3), ....

Open Questions

dispersive estimates for domains with boundaries



Mathematical Analysis II : Primitive Equations

’92-’95 : full primitive equations introduced by Lions, Temam and
Wang, existence of a global weak solution for a ∈ L2.

Uniqueness question seems to be open

’01 : Guillén-González, Masmoudi, Rodiguez-Bellido : existence of a
unique, local, strong solution for a ∈ H1

’07, Cao and Titi : breakthrough result : existence of a unique,
global strong solution for arbitrary initial data a ∈ H1

Aim : show existence of a unique, global strong solution to primitive
equations for data a having less differentiability properties than H1.



Strategy of Lp-Approach

solution of the linearized equation is governed by an analytic
semigroup Tp on the space Xp

Xp is defined as the range of the hydrostatic Helmholtz projection
Pp : Lp(Ω)2 → L

p
σ(Ω)

2

This space corresponds to solenoidal space L
p
σ(Ω) for Navier-Stokes

equations

generator of Tp is −Ap called the hydrostatic Stokes operator.

rewrite primitive equations as
{

v ′(t) + Apv(t) = Ppf (t)− Pp(v · ∇Hv + w∂zv), t > 0,

v(0) = a.

consider integral equation

v(t) = e−tApa +

∫ t

0
e−(t−s)Ap

(

Ppf (s) + Fpv(s)
)

ds, t ≥ 0,

where Fpv := −Pp(v · ∇Hv + w∂zv)



Strategy of Lp-approach
show that v is unique, local, strong solution, i.e.
v ∈ C 1((0,T ∗];Xp) ∩ C ((0,T ∗];D(Ap)), p ∈ (1,∞)

Hence, one ontains existence of a unique, global, strong solution for
arbirtrary a ∈ [Xp,D(Ap)]1/p for 1 < p <∞ provided

sup0≤t≤T ‖v(t)‖H2(Ω) is bounded by some constant
B = B(‖a‖H2(Ω),T ) for any T > 0.

proof of global H2-bound for v

in addition : ‖v(t)‖H2(Ω) is decaying exponentially as t → ∞.

Recent Theorem :
Let p ∈ (1,∞), a ∈ V1/p,p and f ≡ 0. Then there exists a unique,
strong global solution (v , π) to primitive equations within the
regularity class

v ∈ C 1((0,∞); Lp(Ω)2)∩C ((0,∞);W 2,p(Ω)2), π ∈ C ((0,∞);W 1,p(G )∩Lp0(G )).

Moreover, the solution (v , π) decays exponentially, i.e. there exist
constants M, c , c̃ > 0 such that

‖∂tv(t)‖Lp(Ω) + ‖v(t)‖W 2,p(Ω) + ‖π‖W 1,p(G) ≤ Mt−c̃e−ct , t > 0.



Open questions

rough data ?, a ∈ L∞ ?

realistic domains : domains with
”
islands“

fluid-structure interaction : iceberg swimming in hydrostatic fluid

moving iceberg is melting, Stefan type problems



Mathematical Analysis III : Ekman Layers

Consider above perturbated equation as evolution equation in
L
p
σ(R3

+)

Rewrite perturbated equation in Lp(R3
+) as

ut + ASCEu + P(u · ∇u) = 0, t > 0,
u(0) = u0

ASu := P∆u, Stokes Operator
ACu := Pωe3 × u, Coriolis Operator

AEu := P [uE · ∇)u + u3
∂uE
∂x3

] Ekman Operator

ASCE := AS + AC + AE , Stokes-Coriolis-Ekman

Define Reynolds number as R := u∞δ
ν

Stability problem : there exists critical Reynolds number Rc such that
◮ R < Rc =⇒ solution is stable
◮ R > Rc =⇒ solution is unstable
◮ construct suitable weak solution which allows to deduce asymptotic

properties



Idea of construction of such a weak solutions

Consider Yosida approximation by operator Jk

Jk := k(k − ASCE )
−1, k ∈ N.

and set
w0k := Jkw0 and Fkw := −P(Jkw · ∇)w

and construct approximate solutions wk for small t by solving the integral
equation

wk(t) = etASCEw0k +

∫ t

0
e(t−s)ASCE Fkwk(s)ds.

in the Banach space X := C ([0,T ];D(A
1/2
SCE ))

Construction in four steps :

Step 1 : existence of an approximate solution for small t

Step 2 : existence of an approximate solution for given large T > 0

Step 3 : extract weakly converging subsequence

Step 4 : subsequence fulfills perturbed equations



Stability Results for Ekman spiral

Assume Reynolds number R = u∞δ
ν is small. Then

for all w0 ∈ L2σ(R
3
+) there exists a weak solution to perturbed

equation with w(0) = w0 satisfying

lim
T→∞

∫ T+1

T

||w(s)||H1ds = 0

Giga et al : stability criteria for non-decaying perturbations in other
function spaces

determine how σ(ASCE ) changes with Reynolds number

instabilty results in above norm ?

Ekman spirals over spheres ?



Mathematical Analysis IV : Stratified Fluids

Recall






∂tv + (v · ∇)v − ν∆v +∇π − Ωe3 × v = θe3 + g , in R
3 × (0,T ),

∂tθ + (v · ∇)θ − κ∆v = N2v3 + h, in R
3 × (0,T ),

div v = 0, in R
3 × (0,T ).

assume g , h are peridoc with period T

do geophysical equations allow for periodic solutions if forces are
periodic ?

Navier-Stokes : yes, for f small

primitive : yes, for f large

rotating stratified fluids, yes for large f if rotation is large

use again disperive effect of rotation

periodic solutions for primitive equation if ∆ is replaced by ∆H ?



Primitive : Periodic Solutions for Large Forces

Aims :

show existence of strong time-periodic solutions for arbitrary
(time-periodic) f ∈ L2(0,T , L2(Ω)), without assuming any smallness
condition on f

Consequence : analogous result for steady-state solutions

Approach based on three steps :

construct a suitable weak time-periodic solution v by combining
classical Galerkin’s method with Brouwer’s fixed point theorem.

show existence of a unique, strong solution u to the initial-value
problem for arbitrary f ∈ L2(0;T ; L2(Ω)) and a in a subspace of
H1(Ω)

look at v as a weak solution to the initial-value problem, employ
weak-strong uniqueness argument : This yields v ≡ u



Weak and Strong Periodic Solutions

v is a weak T -periodic solution provided

v ∈ C (J; L2(Ω)) ∩ L2(J;H1(Ω)) is a weak solution

v satisfies strong energy inequality

‖v(t)‖22 + 2

∫ t

s

‖∇v(τ)‖22dτ ≤ ‖v(s)‖22 + 2

∫ t

s

(f (τ), v(τ))dτ

v(t + T ) = v(T ) for all t ≥ 0

A weak T -periodic solution v is strong if in addition
v ∈ C (J;H1(Ω)) ∩ L2(J;H2(Ω))

Proposition : Let f ∈ L2(J; L2(Ω)) be T -periodic. Then there exists at
least one weak T -periodic solution v

Proof : Galerkin procedure and Brouwer’s fixed point theorem



Periodic Solutions via Weak-Strong Uniqueness

Let f ∈ L2(J; L2(Ω)) be T -periodic. Then there exists unique global
strong solution u for arbitrary large a ∈ H1(Ω)

weak-strong uniqueness theorem : u = v
◮ Idea of Proof :
◮ weak theory : there is t0 > 0 with v(t0) ∈ H1

◮ take v(t0) as initial data for strong solution u
◮ take u as test function
◮ for w = v − u one has

‖w(t)‖22+

∫ t

t0

‖∇w(s)‖22ds ≤ C

∫ t

t0

[‖∇Hu(s)‖
4
2 + ‖∇Hu(s)‖

2
2‖D

2u(s)‖22]‖w(s)‖22ds

◮ blue term in L1(t0, t) due to regularity of strong solutions u
◮ Gronwall : w = 0

Theorem : primitive equations admit a strong, periodic solution for
non small periodic f ∈ L2(J, L2)

Corollary : primitive equations admit a stationary solution for non
small periodic f ∈ L2(J, L2)


