Mathematical Analysis of various Geophysical Flows

Matthias Hieber
TU Darmstadt, Germany
Interdisciplinary Seminar Nonlinear Sciences
University of Tokyo
Kashiwa

Geophysical Flows

Outline of the program

- General Conservation Laws and $2^{\text {nd }}$-Law of Thermodynamics
- Conservation of mass, momentum, energy
- Entropy
- Physical understanding of oceanic and atmospheric flows
- geostrophic approximation and hydrostratic law
- Coriolis force
- balance gravitation and rotation : the Taylor-Proudham Theorem
- shallow water models
- stratified fluids
- friction forces and Ekman boundary layers
- Mathematical Equations
- Navier-Stokes-Coriolis equations
- Primitive equations
- Ekman layers
- Stratified heat-conducting fluids
- Quasigeostrophic equations
- Key Mathematical Results and Open Problems
- unique, global, strong solvability for large data with/without fast rotation, periodic solutions for small/large forces, stability issues

Balance Laws for Mass, Momentum and Energy

The balance laws for mass, momentum and energy read as

$$
\begin{aligned}
\partial_{t} \rho+\operatorname{div}(\rho u) & =0 & & \text { in } \Omega, \\
\rho\left(\partial_{t}+u \cdot \nabla\right) u+\nabla \pi & =\operatorname{div} S & & \text { in } \Omega, \\
\rho\left(\partial_{t}+u \cdot \nabla\right) \epsilon+\operatorname{div} q & =S: \nabla u-\pi \operatorname{div} u & & \text { in } \Omega, \\
u=0, \quad q \cdot \nu & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

- ρ density, u velocity, π pressure, ϵ internal energy, S extra stress and q heat flux.
- This gives conservation of the total energy since

$$
\rho\left(\partial_{t}+u \cdot \nabla\right) e+\operatorname{div}(q+\pi u-S u)=0 \quad \text { in } \Omega,
$$

with $e:=|u|^{2} / 2+\epsilon$ energy density (kinetic and internal).

- Integrating over Ω yields

$$
\partial_{t} \mathrm{E}(t)=0, \quad \mathrm{E}(t)=\mathrm{E}_{k i n}(t)+\mathrm{E}_{\text {int }}(t)=\int_{\Omega} \rho(t, x) e(t, x) d x,
$$

provided $q \cdot \nu=u=0 \quad$ on $\partial \Omega$

Basic Laws from Thermodynamics

- Ansatz : free energy $\psi=\psi(\rho, \theta)$.
- Then

$$
\begin{aligned}
\epsilon & =\psi+\theta \eta \quad \text { internal energy, } \\
\eta & =-\partial_{\theta} \psi \quad \text { entropy, } \\
\kappa & =\partial_{\theta} \epsilon=-\theta \partial_{\theta}^{2} \psi \quad \text { heat capacity. }
\end{aligned}
$$

- classical case, Clausius-Duhem equation reads as

$$
\rho\left(\partial_{t}+u \cdot \nabla\right) \eta+\operatorname{div}(q / \theta)=S: \nabla u / \theta-q \cdot \nabla \theta / \theta^{2}+\left(\rho^{2} \partial_{\rho}-\pi\right)(\operatorname{div} u) / \theta \quad \text { in } \Omega .
$$

- Hence, entropy flux Φ_{η} is given by $\Phi_{\eta}:=q / \theta$
- entropy production by

$$
\theta r:=S: \nabla u-q \cdot \nabla \theta / \theta+\left(\rho^{2} \partial_{\rho}-\pi\right)(\operatorname{div} u)
$$

- boundary conditions employed yield that for total entropy N we have

$$
\partial_{t} \mathrm{~N}(t)=\int_{\Omega} r(t, x) d x \geq 0, \quad \mathrm{~N}(t)=\int_{\Omega} \rho(t, x) \eta(t, x) d x,
$$

provided $r \geq 0$ in Ω.

- $\operatorname{div} u$ has no sign, hence $\pi=\rho^{2} \partial_{\rho} \psi$, Maxwell's relation.
- this leads to $S: \nabla u \geq 0$ and $q \cdot \nabla \theta \leq 0$.

Summary

- Summarizing : conservation of energy and total entropy is non-decreasing provided these conditions, Maxwell and (BC) are satisfied, independent of special form of stress S and heat flux q
- Thus, these conditions ensure thermodynamical consistency of the model.
- example : classical laws due to Newton and Fourier :

$$
S:=S_{N}:=2 \mu_{s} D+\mu_{b} \operatorname{div} u l, \quad 2 D=\left(\nabla u+[\nabla u]^{\top}\right), \quad q=-\alpha_{0} \nabla \theta .
$$

- thermodynamically consistent if $\mu_{s} \geq 0,2 \mu_{s}+n \mu_{b} \geq 0$ and $\alpha_{0} \geq 0$

Some Physics for Oceanic and Atmosheric Flows

- thin spherical layer of fluid
- Geostrophic and Hydrostatic Approximation
- first dominating force is gravity : hydrostatic law

$$
\varrho=\varrho\left(x_{3}\right), \quad p=p_{0}\left(x_{3}\right) \text { with }\left(p_{0}\right)_{x_{3}}=-\varrho g
$$

- aspect ratio ; $\delta=\frac{D}{L}$
- Coriolis force : time for fluid with speed u to cross distance L is L / U
- if this time is small compared to period of rotation $|\Omega|^{-1}$, fluid does not feel rotation
- rotation important only if Rossby number $\varepsilon=\frac{U}{2|\Omega| L}$ is small, realistic range $\varepsilon \sim 0.05$
- balance between gravity and rotation :

$$
(\Omega \cdot \nabla) u-\Omega \nabla \cdot u=-\frac{\nabla \varrho \times \nabla p}{2 \varrho^{2}}
$$

if δ small, then only vertical component of rotation $f=|\Omega| \sin \theta$ is dynamically significant. Hence :

$$
\begin{aligned}
\left(f e_{3} \cdot \nabla\right) u_{h} & =-\frac{(\nabla \varrho \times \nabla p)_{h}}{2 \varrho^{2}} \\
f e_{3} \cdot u_{h} & =0
\end{aligned}
$$

The Taylor-Proudman Theorem and Approximations

- if fluid is barotropic, then $\left(f e_{3} \cdot \nabla\right) u_{h}=0$
- if fluid is incompressible, then $\left(f e_{3} \cdot \nabla\right) u_{3}=0$
- this means all 3 components of velocity are independent of x_{3}. This is the Taylor-Proudman theorem
- specify to Coriolis force : $2 \varrho \Omega \times u=-\nabla p-\varrho g e_{3}$
- δ small implies that only $f e_{3}$ is dynamically significant. This yields

$$
\begin{array}{ll}
u_{h}=\frac{1}{f \varrho_{0}} e_{3} \times \nabla p & \text { geostrophic approximation } \\
\varrho g=-\partial_{3} p & \text { hydrostatic approximation }
\end{array}
$$

- geostrophic approximation : balance between $\nabla_{H} p$ and horizontol component of Coriolis force
- hydrostatic approximation : balance between $\partial_{3} p$ and gravity

Departures from Geostrophy: Waves in Shallow Water

- shallow layer of incompressible and inviscid fluid : fluid described by height H : fluctuation η around refence height H_{0}, purely horizontal velocity u
- δ small yields $u \cdot \nabla\left(f / H_{0}\right)=0$
- pertubations of (η, u) yield

$$
\begin{aligned}
\left(\eta_{t t}+f^{2} \eta+\nabla \cdot\left(c_{0}^{2} \nabla \eta\right)\right)_{t}-g f\left(\left(H_{0}\right)_{x} \eta_{y}-\left(H_{0}\right)_{y} \eta_{x}\right) & =0 \\
\left(u_{1}\right)_{t t}+f^{2} u_{1} & =-g\left(\eta_{x t}+f \eta_{y}\right) \\
\left(u_{2}\right)_{t t}+f^{2} u_{2} & =-g\left(\eta_{y t}-f \eta_{x}\right)
\end{aligned}
$$

with shallow water speed $c_{0}=\left(g H_{0}\right)^{1 / 2}$.

- consider solutions of form $\exp \left(i\left[\sigma t+k_{1} x_{1}+k_{2} x_{2}\right]\right)$
- gravity waves: Poincaré waves: $\sigma^{2}=f^{2}+c_{0}^{2} k^{2}$
- Kelvin waves: $\sigma^{2}=c_{0}^{2} k_{1}^{2}$
- planetary waves: Rossby waves: ...

Effects of Stratification

- recall hydrostatic equilibrium :

$$
\varrho=\varrho\left(x_{3}\right), \quad p=p_{0}\left(x_{3}\right) \text { with }\left(p_{0}\right)_{x_{3}}=-\varrho g
$$

- $\partial_{t t} u_{3}+N^{2} u_{3}=\varrho^{-1} \partial_{t 3} p^{\prime}$ with
- $N^{2}=-g \varrho^{-1} \partial_{3} \varrho_{0}$ buoyancy frequency

Dissipation from viscosity

- how to represent frictional forces \mathcal{F} ?
- \mathcal{F} proportional to $\nabla S, S$ stress tensor, coefficient is viscosity ν
- $\frac{\mathcal{F}}{\varrho} \sim \frac{\nu U}{L^{2}}$
- Ekman number E : ratio between frictional force per unit mass to Coriolis acceleration
- $E=\frac{\nu U / L^{2}}{1 \Omega U}=\frac{\nu}{2 \Omega L^{2}}$

Influence of Boundary Conditions

- so far : rotational effects studied in absence of boundaries
- example : stress induced by wind on ocean surface induces so-called Ekman transport
- Ekman flow causes mass to flow horizontally into some region and out of others
- This results vertical motion, e.g. vertical motion away from boundary in order to conserve mass
- vertical velocity produced is called Ekman pumping : this velocity distorts density field of ocean and causes wind-driven currents
- also bottom friction

Equation I : Equations of Navier-Stokes with Coriolis force

Simplifications : fluid incompressible, isothermal, no hor./vertical scaling but rotational effects

- / observer in non-rotating inertial frame. Then :

$$
\left(\frac{d r}{d t}\right)_{I}=\left(\frac{d r}{d t}\right)_{R}+\Omega \times r
$$

- Thus $u_{I}=u_{R}+\Omega \times r$
- Newton: Forces equal acceleration in inertial frame, thus

$$
\begin{aligned}
\left(\frac{d u_{I}}{d t}\right)_{I} & =\left(\frac{d u_{I}}{d t}\right)_{R}+\Omega \times u_{I} \\
& =\left(\frac{d u_{R}}{d t}\right)_{R}+2 \Omega \times u_{R}+\Omega \times(\Omega \times r)+\frac{d \Omega}{d t} \times r
\end{aligned}
$$

- write centrifugal force as gradient: $\Omega \times(\Omega \times r)=-\nabla \frac{|\Omega \times r|^{2}}{2}$

$$
\begin{aligned}
u_{t}-\Delta u+(u \cdot \nabla) u+2 \Omega \times u+\nabla p & =f, \quad \text { in }[0, T] \times \Omega \\
\operatorname{div} u & =0, \quad \text { in }[0, T] \times \Omega \\
u & =0, \quad \text { in }[0, T] \times \partial \Omega \\
u(0) & =u_{0}, \quad \text { in } \Omega
\end{aligned}
$$

Equation II : Hydrostatic Approx. : Primitive Equations

Primitive equations are fundamental model in geophysical flows, introduced by Lions, Temam and Wang in 1992-1993

Fig. 1.
The domains M^{a} and M^{s} are open submanifolds of $S^{2} \times \mathbb{R}$. We denote by M any one of the domains M^{a} or M^{s}. The Riemannian geometry of M is the same as that of $S^{2} \times \mathbb{R}$ or $S^{2} \times(0,1)$. The tangent space $T_{(q, \xi)} M$ of M at $(q, \xi) \in M$ can be decomposed into the product of $T_{q} S^{2}$ and \mathbb{R} as follows

$$
\begin{equation*}
T_{(q, \xi)} M=T_{q} S^{2} \times \mathbb{R} \tag{1.6}
\end{equation*}
$$

- $M_{a}=\mathbb{S}^{2} \times(0,1), M_{s}=\bigcup_{(\theta, \varphi) \in \Gamma_{i}}\{(\theta, \varphi) \times(-h(\theta, \varphi), 0)\}$
- both are submanifolds of $\mathbb{S}^{2} \times \mathbb{R}$
- Riemannian metric g_{M} on M :

$$
g_{M}\left((q, \xi),\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right)\right)=g_{\mathbb{S}^{2}}\left(q, v_{1}, v_{2}\right)+w_{1} w_{2}, \quad v_{1}, v_{2} \in T^{2} \mathbb{S}, w_{1}, w_{2} \in \mathbb{R}
$$

Primitive Equations on this manifold

- scaling argument taking into account different horizontal and vertical dimensions yields

$$
\left\{\begin{aligned}
\partial_{t} v+u \cdot \nabla v-\Delta v+\nabla_{H} \pi & =f, & & \text { in } M \times(0, T), \\
\operatorname{div} u & =0, & & \text { in } M \times(0, T), \\
\partial_{t} \tau+u \cdot \nabla \tau-\Delta \tau & =g_{\tau}, & & \text { in } M \times(0, T), \\
\partial_{z} \pi+1-\beta_{\tau}(\tau-1) & =0, & & \text { in } M \times(0, T),
\end{aligned}\right.
$$

- velocity $u=(v, w)$, where $v=\left(v_{1}, v_{2}\right)$ denotes the horizontal component and w the vertical one
- simplifying : consider $\Omega=G \times(-h, 0)$ where $G=(0,1) \times(0,1)$
- Boundary conditions :

$$
\left\{\begin{array}{rrr}
\partial_{z} v=0, & w=0, & \partial_{z} \tau+\alpha \tau=0, \\
v=0, & \text { on } \Gamma_{u} \times(0, \infty), \\
v, & \partial_{z} \tau=0, & \text { on } \Gamma_{b} \times(0, \infty), \\
v, \pi, \tau, \sigma & \text { are periodic } & \text { on } \Gamma_{I} \times(0, \infty),
\end{array}\right.
$$

where

$$
\Gamma_{u}=G \times\{0\}, \quad \Gamma_{b}=G \times\{-h\} \quad \text { and } \quad \Gamma_{l}=\partial G \times(-h, 0),
$$

and $\alpha>0$.

Isothermal Situation

In isothermal situation, primitive equations are given by

$$
\begin{align*}
\partial_{t} v+u \cdot \nabla v-\Delta v+\nabla_{H} \pi & =f & \text { in } \Omega \times(0, T), \\
\partial_{z} \pi & =0 & \text { in } \Omega \times(0, T), \tag{1}\\
\operatorname{div} u & =0 & \text { in } \Omega \times(0, T), \\
v(0) & =a . &
\end{align*}
$$

- $\Omega=G \times(-h, 0)$, where $G=(0,1)^{2}, h>0$

System is complemented by the set of boundary conditions

$$
\begin{align*}
\partial_{z} v & =0, \quad w=0 & & \text { on } \Gamma_{u} \times(0, T), \\
v & =0, \quad w=0 & & \text { on } \Gamma_{b} \times(0, T), \tag{2}\\
& u, \pi \text { are periodic } & & \text { on } \Gamma_{l} \times(0, T) .
\end{align*}
$$

- $\Gamma_{u}:=G \times\{0\}, \Gamma_{b}:=G \times\{-h\}, \Gamma_{l}:=\partial G \times[-h, 0]$

Equation III : Stratified Flows

Thermal disturbance about mean state in hydrostatic balance :

$$
\left\{\begin{aligned}
\partial_{t} v+(v \cdot \nabla) v-\nu \Delta v+\nabla \pi-\Omega e_{3} \times v & =\theta e_{3}+g, & & \text { in } \mathbb{R}^{3} \times(0, T), \\
\partial_{t} \theta+(v \cdot \nabla) \theta-\kappa \Delta v & =N^{2} v_{3}+h, & & \text { in } \mathbb{R}^{3} \times(0, T), \\
\operatorname{div} v & =0, & & \text { in } \mathbb{R}^{3} \times(0, T) .
\end{aligned}\right.
$$

- N bouyancy frequency
- assume $\mu:=\frac{\Omega}{N}$ fixed

Equation IV : Ekman Boundary Layers

The Navier-Stokes-Coriolis equations admits an explicit stationary solution (u_{E}, p_{E}):

$$
\begin{aligned}
& u_{E}\left(x_{3}\right):=\left(u_{E}^{1}\left(x_{3}\right), u_{E}^{2}\left(x_{3}\right), 0\right) \\
& p_{E}\left(x_{2}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
u_{E}^{1}\left(x_{3}\right) & :=u_{\infty}\left(1-e^{-\frac{x_{3}}{\delta}} \cos \left(\frac{x_{3}}{\delta}\right)\right) \\
u_{E}^{2}\left(x_{3}\right) & :=u_{\infty} e^{-\frac{x_{3}}{\delta}} \sin \left(\frac{x_{3}}{\delta}\right),
\end{aligned}
$$

where $\delta:=\left(\frac{2 \nu}{|\omega|}\right)^{1 / 2}$ thickness of boundary layer

- stationary solution goes back to swedish oceanograph V. Ekman, 1905
- in his honour : Ekman spiral
- study here : stability properties of Ekman spiral
- many more examples : quasigeostrophic equations, ...

Deterministic Perturbations

Let (u, p) be a solution of Navier-Stokes-Coriolis system in halfspace and set

$$
v:=u-u_{E}, \quad q:=p-p_{E}
$$

Then (v, q) satisfies the equation

$$
\begin{aligned}
v_{t}-\Delta v+\omega e_{3} \times v+\left(u_{E} \cdot \nabla\right) v+v_{3} \frac{\partial u_{E}}{\partial x_{3}}+v \cdot \nabla v+\nabla q & =0, x \in \mathbb{R}_{+}^{3}, t>0 \\
\operatorname{div} v & =0, x \in \mathbb{R}_{+}^{3}, t>0 \\
v\left(t, x_{1}, x_{2}, 0\right) & =0, x_{1}, x_{2} \in \mathbb{R}, t>0 \\
v(0, x) & =u_{0}(x)
\end{aligned}
$$

We say that u_{E} is nonlinearly stable if above equation admits a "global solution" v such that $v(t) \rightarrow 0$ as $t \rightarrow \infty$ in a certain sense.

Stochastic Perturbations

Consider stochastic analogue in layer $D:=\mathbb{T}^{2} \times(0, b)$

$$
\left\{\begin{aligned}
d u_{t} & =\left[\nu \Delta u_{t}-\omega\left(e_{3} \times u_{t}\right)-\left(u_{t} \cdot \nabla\right) u_{t}+\nabla p_{t}\right] d t+d W_{t} \\
\operatorname{div} u_{t} & =0 \\
u_{t}\left(x_{1}, x_{2}, 0\right) & =0 \\
u_{t}\left(x_{1}, x_{2}, b\right) & =e_{1} \cdot u_{b}
\end{aligned}\right.
$$

- $\left(W_{t}\right)_{t \geq 0}$ is H-valued Q-Wiener process, where $H:=L_{\sigma}^{2, \text { per }}(D)$ defined on stochastic basis $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, P\right)$
Consider stochastic perturbations u_{t} of u_{b}^{E}, i.e.

$$
v_{t}=u_{t}+u_{b}^{E}, \quad q_{t}=p_{t}+p_{b}^{E}
$$

Mathematical Analysis I : Navier-Stokes-Coriolis

Strategy for strong well-posedness for Navier-Stokes :

- write equations of Navier-Stokes as Evolution Equation

$$
u^{\prime}(t)-A u(t)=-P[u(t) \cdot \nabla) u(t)
$$

in Banach space $L_{\sigma}^{p}(\Omega)$, where

- $A=P \Delta$, Stokes operator
- P, Helmholtz projection
- rewrite evolution equation as integral equation

$$
u(t)=e^{t A} u_{0}-\int_{0}^{t} e^{(t-s) A} P[(u(s) \cdot \nabla) u(s)] d s
$$

- solve integral equation via fixed point methods or iteration scheme
- Find function space F in which iteration scheme
- $u_{1}(t)=e^{t A} u_{0}$
- $u_{n+1}(t)=e^{t A} u_{0}-\int_{0}^{t} e^{(t-s) A} P\left[\left(u_{n}(s) \nabla\right) u_{n}(s)\right] d s$ converges.
- important: properties of Stokes operator and Stokes semigroup

Unique, Strong solutions for Equations of Navier-Stokes

Assume $\Omega \subset \mathbb{R}^{3}$ bounded, $\partial \Omega$ smooth

- Fujita-Kato : if either $u_{0} \in D(A)^{1 / 4}$ or interval of existence for T is sufficiently small, then there exists a unique, strong solution on $[0, T)$.
- in particular: L^{2}-situation : $u_{0} \in \dot{H}^{1 / 2}$
- Extension of iteration schema on scaling invariant function spaces
- key results by Y. Giga '86, T. Kato : $u_{0} \in L_{\sigma}^{p}(\Omega)$ for $p \geq 3$
- Cannone-Meyer : Well-posedness for $u_{0} \in B_{p, \infty}^{-1+3 / p}\left(\mathbb{R}^{3}\right)$
- Koch-Tataru : Well-posedness for $u_{0} \in B M O^{-1}\left(\mathbb{R}^{3}\right)$
- Bourgain-Pavlovic: III-posedness for $u_{0} \in B_{\infty, \infty}^{-1}\left(\mathbb{R}^{3}\right)$, i.e. solution operator $u_{0} \mapsto u(t)$ is not continuous with respect to $\|\cdot\|_{B_{\infty}^{-\infty}}^{-1}$
- global strong solution provided $n=2$

Navier-Stokes-Coriolis

Recall

$$
\begin{aligned}
u_{t}-\Delta u+(u \cdot \nabla) u+\Omega e_{3} \times u+\nabla p & =f, \quad \text { in }[0, T] \times \mathbb{R}^{3} \\
\operatorname{div} u & =0, \quad \text { in }[0, T] \times \Omega \\
u(0) & =u_{0}, \quad \text { in } \Omega
\end{aligned}
$$

- Babenko, Mahalov, Nikolenco : pioneering result on global well-posedness for large data provided Ω is large enough
- global well-posedness result Chemin, Desjardins, Gallagher, Grenier :
- let $u_{0} \in H^{1 / 2}\left(\mathbb{R}^{3}\right)$ with div $u_{0}=0$. Then exists $\Omega_{0}>0$ such that for all $\Omega \geq \Omega_{0}$ the (NSC)-equation admits a unique, global mild solution
- surprising : no smallness condition for u_{0}
- proof relies on dispersive estimates for linear semigroup $e^{t A_{S C E}}$

$$
e^{t A_{\text {SCE }}} f=e^{i \Omega t \frac{R_{3}}{\Delta^{1 / 2}}}\left[e^{t \Delta(I+R) f}\right]+e^{-i \Omega t \frac{R_{3}}{\Delta^{1 / 2}}}\left[e^{t \Delta(I-R) f}\right]
$$

Strichartz Estimates by Koh, Lee, Takada

Let $2 \leq q \leq \infty, 2 \leq r<\infty$ satisfy $1 / q+1 / r \leq 1 / 2$. Then

$$
\| e^{i \Omega t \frac{R_{3}}{\Delta^{1 / 2}} f\left\|_{\left.L^{q}(0, \infty) ; L^{r}\left(\mathbb{R}^{3}\right)\right)} \leq C|\Omega|^{-1 / q}\right\| f \|_{H^{3 / 2-3 / r}} .}
$$

- Remark: no smoothing in spatial variable
- Further results : global solutions uniform in $\Omega: u_{0} \in F M_{0}^{-1}\left(\mathbb{R}^{3}\right)$, $u_{0} \in H^{1 / 2}\left(\mathbb{R}^{3}\right), \ldots$
Open Questions
- dispersive estimates for domains with boundaries

Mathematical Analysis II : Primitive Equations

- '92-'95 : full primitive equations introduced by Lions, Temam and Wang, existence of a global weak solution for $a \in L^{2}$.
- Uniqueness question seems to be open
- '01 : Guillén-González, Masmoudi, Rodiguez-Bellido : existence of a unique, local, strong solution for $a \in H^{1}$
- '07, Cao and Titi : breakthrough result : existence of a unique, global strong solution for arbitrary initial data $a \in H^{1}$
- Aim : show existence of a unique, global strong solution to primitive equations for data a having less differentiability properties than H^{1}.

Strategy of L^{p}-Approach

- solution of the linearized equation is governed by an analytic semigroup T_{p} on the space X_{p}
- X_{p} is defined as the range of the hydrostatic Helmholtz projection $P_{p}: L^{p}(\Omega)^{2} \rightarrow L_{\bar{\sigma}}^{p}(\Omega)^{2}$
- This space corresponds to solenoidal space $L_{\bar{\sigma}}^{p}(\Omega)$ for Navier-Stokes equations
- generator of T_{p} is $-A_{p}$ called the hydrostatic Stokes operator.
- rewrite primitive equations as

$$
\left\{\begin{aligned}
v^{\prime}(t)+A_{p} v(t) & =P_{p} f(t)-P_{p}\left(v \cdot \nabla_{H} v+w \partial_{z} v\right), \quad t>0, \\
v(0) & =a .
\end{aligned}\right.
$$

- consider integral equation

$$
v(t)=e^{-t A_{p}} a+\int_{0}^{t} e^{-(t-s) A_{\rho}}\left(P_{p} f(s)+F_{p} v(s)\right) d s, \quad t \geq 0
$$

where $F_{p} v:=-P_{p}\left(v \cdot \nabla_{H} v+w \partial_{z} v\right)$

Strategy of L^{p}-approach

- show that v is unique, local, strong solution, i.e.

$$
v \in C^{1}\left(\left(0, T^{*}\right] ; X_{p}\right) \cap C\left(\left(0, T^{*}\right] ; D\left(A_{p}\right)\right), p \in(1, \infty)
$$

- Hence, one ontains existence of a unique, global, strong solution for arbirtrary $a \in\left[X_{p}, D\left(A_{p}\right)\right]_{1 / p}$ for $1<p<\infty$ provided
- $\sup _{0 \leq t \leq T}\|v(t)\|_{H^{2}(\Omega)}$ is bounded by some constant $\left.B=B \overline{\left(\|a\| H^{2}(\Omega)\right.}, T\right)$ for any $T>0$.
- proof of global H^{2}-bound for v
- in addition: $\|v(t)\|_{H^{2}(\Omega)}$ is decaying exponentially as $t \rightarrow \infty$.
- Recent Theorem :

Let $p \in(1, \infty), \quad a \in V_{1 / p, p}$ and $f \equiv 0$. Then there exists a unique, strong global solution (v, π) to primitive equations within the regularity class
$v \in C^{1}\left((0, \infty) ; L^{p}(\Omega)^{2}\right) \cap C\left((0, \infty) ; W^{2, p}(\Omega)^{2}\right), \pi \in C\left((0, \infty) ; W^{1, p}(G) \cap L_{0}^{p}(G)\right)$.
Moreover, the solution (v, π) decays exponentially, i.e. there exist constants $M, c, \tilde{c}>0$ such that

$$
\left\|\partial_{t} v(t)\right\|_{L^{p}(\Omega)}+\|v(t)\|_{W^{2, p}(\Omega)}+\|\pi\|_{W^{1, p}(G)} \leq M t^{-\tilde{c}} e^{-c t}, \quad t>0 .
$$

Open questions

- rough data?, $a \in L^{\infty}$?
- realistic domains : domains with „islands"
- fluid-structure interaction : iceberg swimming in hydrostatic fluid
- moving iceberg is melting, Stefan type problems

Mathematical Analysis III : Ekman Layers

- Consider above perturbated equation as evolution equation in $L_{\sigma}^{p}\left(\mathbb{R}_{+}^{3}\right)$
- Rewrite perturbated equation in $L^{p}\left(\mathbb{R}_{+}^{3}\right)$ as

$$
\begin{aligned}
u_{t}+A_{S C E} u+P(u \cdot \nabla u) & =0, \quad t>0, \\
u(0) & =u_{0}
\end{aligned}
$$

$$
\begin{array}{lll}
A_{S} u & :=P \Delta u, & \text { Stokes Operator } \\
A_{C} u & :=P \omega e_{3} \times u, & \text { Coriolis Operator } \\
A_{E} u & \left.:=P\left[u_{E} \cdot \nabla\right) u+u_{3} \frac{\partial u_{E}}{\partial x_{3}}\right] & \text { Ekman Operator } \\
A_{S C E} & :=A_{S}+A_{C}+A_{E}, & \text { Stokes-Coriolis-Ekman }
\end{array}
$$

- Define Reynolds number as $R:=\frac{\mu_{\infty} \delta}{\nu}$
- Stability problem : there exists critical Reynolds number R_{c} such that
- $R<R_{c} \Longrightarrow$ solution is stable
- $R>R_{c} \Longrightarrow$ solution is unstable
- construct suitable weak solution which allows to deduce asymptotic properties

Idea of construction of such a weak solutions

Consider Yosida approximation by operator J_{k}

$$
J_{k}:=k\left(k-A_{S C E}\right)^{-1}, \quad k \in \mathbb{N} .
$$

and set

$$
w_{0 k}:=J_{k} w_{0} \text { and } F_{k} w:=-P\left(J_{k} w \cdot \nabla\right) w
$$

and construct approximate solutions w_{k} for small t by solving the integral equation

$$
w_{k}(t)=e^{t A_{S C E}} w_{0 k}+\int_{0}^{t} e^{(t-s) A_{S C E}} F_{k} w_{k}(s) d s
$$

in the Banach space $X:=C\left([0, T] ; D\left(A_{S C E}^{1 / 2}\right)\right)$
Construction in four steps :

- Step 1 : existence of an approximate solution for small t
- Step 2 : existence of an approximate solution for given large $T>0$
- Step 3 : extract weakly converging subsequence
- Step 4 : subsequence fulfills perturbed equations

Stability Results for Ekman spiral

Assume Reynolds number $R=\frac{u_{\infty} \delta}{\nu}$ is small. Then

- for all $w_{0} \in L_{\sigma}^{2}\left(\mathbb{R}_{+}^{3}\right)$ there exists a weak solution to perturbed equation with $w(0)=w_{0}$ satisfying

$$
\lim _{T \rightarrow \infty} \int_{T}^{T+1}\|w(s)\|_{H^{1}} d s=0
$$

- Giga et al : stability criteria for non-decaying perturbations in other function spaces
- determine how $\sigma\left(A_{S C E}\right)$ changes with Reynolds number
- instabilty results in above norm?
- Ekman spirals over spheres?

Mathematical Analysis IV : Stratified Fluids

Recall

$$
\left\{\begin{aligned}
\partial_{t} v+(v \cdot \nabla) v-\nu \Delta v+\nabla \pi-\Omega e_{3} \times v & =\theta e_{3}+g, & & \text { in } \mathbb{R}^{3} \times(0, T) \\
\partial_{t} \theta+(v \cdot \nabla) \theta-\kappa \Delta v & =N^{2} v_{3}+h, & & \text { in } \mathbb{R}^{3} \times(0, T) \\
\operatorname{div} v & =0, & & \text { in } \mathbb{R}^{3} \times(0, T)
\end{aligned}\right.
$$

- assume g, h are peridoc with period T
- do geophysical equations allow for periodic solutions if forces are periodic?
- Navier-Stokes : yes, for f small
- primitive : yes, for f large
- rotating stratified fluids, yes for large f if rotation is large
- use again disperive effect of rotation
- periodic solutions for primitive equation if Δ is replaced by Δ_{H} ?

Primitive : Periodic Solutions for Large Forces

Aims :

- show existence of strong time-periodic solutions for arbitrary (time-periodic) $f \in L^{2}\left(0, \mathcal{T}, L^{2}(\Omega)\right)$, without assuming any smallness condition on f
- Consequence : analogous result for steady-state solutions

Approach based on three steps :

- construct a suitable weak time-periodic solution v by combining classical Galerkin's method with Brouwer's fixed point theorem.
- show existence of a unique, strong solution u to the initial-value problem for arbitrary $f \in L^{2}\left(0 ; \mathcal{T} ; L^{2}(\Omega)\right)$ and a in a subspace of $H^{1}(\Omega)$
- look at v as a weak solution to the initial-value problem, employ weak-strong uniqueness argument : This yields $v \equiv u$

Weak and Strong Periodic Solutions

v is a weak T-periodic solution provided

- $v \in C\left(J ; L^{2}(\Omega)\right) \cap L^{2}\left(J ; H^{1}(\Omega)\right)$ is a weak solution
- v satisfies strong energy inequality

$$
\|v(t)\|_{2}^{2}+2 \int_{s}^{t}\|\nabla v(\tau)\|_{2}^{2} d \tau \leq\|v(s)\|_{2}^{2}+2 \int_{s}^{t}(f(\tau), v(\tau)) d \tau
$$

- $v(t+T)=v(T)$ for all $t \geq 0$

A weak T-periodic solution v is strong if in addition $v \in C\left(J ; H^{1}(\Omega)\right) \cap L^{2}\left(J ; H^{2}(\Omega)\right)$

Proposition : Let $f \in L^{2}\left(J ; L^{2}(\Omega)\right)$ be T-periodic. Then there exists at least one weak T-periodic solution v

Proof: Galerkin procedure and Brouwer's fixed point theorem

Periodic Solutions via Weak-Strong Uniqueness

- Let $f \in L^{2}\left(J ; L^{2}(\Omega)\right)$ be T-periodic. Then there exists unique global strong solution u for arbitrary large $a \in H^{1}(\Omega)$
- weak-strong uniqueness theorem : $u=v$
- Idea of Proof:
- weak theory : there is $t_{0}>0$ with $v\left(t_{0}\right) \in H^{1}$
- take $v\left(t_{0}\right)$ as initial data for strong solution u
- take u as test function
- for $w=v-u$ one has

$$
\|w(t)\|_{2}^{2}+\int_{t_{0}}^{t}\|\nabla w(s)\|_{2}^{2} d s \leq C \int_{t_{0}}^{t}\left[\left\|\nabla_{H} u(s)\right\|_{2}^{4}+\left\|\nabla_{H} u(s)\right\|_{2}^{2}\left\|D^{2} u(s)\right\|_{2}^{2}\right]\|w(s)\|_{2}^{2} d s
$$

- blue term in $L^{1}\left(t_{0}, t\right)$ due to regularity of strong solutions u
- Gronwall : $w=0$
- Theorem : primitive equations admit a strong, periodic solution for non small periodic $f \in L^{2}\left(J, L^{2}\right)$
- Corollary : primitive equations admit a stationary solution for non small periodic $f \in L^{2}\left(J, L^{2}\right)$

