Mathematical Analysis of various Geophysical Flows

Matthias Hieber

TU Darmstadt, Germany

Interdisciplinary Seminar Nonlinear Sciences

University of Tokyo

Kashiwa

Geophysical Flows

Outline of the program

- General Conservation Laws and 2nd-Law of Thermodynamics
 - Conservation of mass, momentum, energy
 - Entropy
- Physical understanding of oceanic and atmospheric flows
 - geostrophic approximation and hydrostratic law
 - Coriolis force
 - balance gravitation and rotation : the Taylor-Proudham Theorem
 - shallow water models
 - stratified fluids
 - friction forces and Ekman boundary layers
- Mathematical Equations
 - Navier-Stokes-Coriolis equations
 - Primitive equations
 - Ekman layers
 - Stratified heat-conducting fluids
 - Quasigeostrophic equations
- Key Mathematical Results and Open Problems
 - unique, global, strong solvability for large data with/without fast rotation, periodic solutions for small/large forces, stability issues

Balance Laws for Mass, Momentum and Energy

The balance laws for mass, momentum and energy read as

$$\partial_t \rho + \operatorname{div}(\rho u) = 0$$
 in Ω_t

$$\rho(\partial_t + u \cdot \nabla)u + \nabla \pi = \operatorname{div} S \qquad \text{in } \Omega,$$

$$p(\partial_t + u \cdot \nabla)\epsilon + \operatorname{div} q = S : \nabla u - \pi \operatorname{div} u$$
 in Ω ,

$$u = 0, \quad q \cdot \nu = 0$$
 on $\partial \Omega$.

- ρ density, u velocity, π pressure, ϵ internal energy, S extra stress and q heat flux.
- This gives conservation of the total energy since

$$\rho(\partial_t + u \cdot \nabla)e + \operatorname{div}(q + \pi u - Su) = 0$$
 in Ω ,

with $e := |u|^2/2 + \epsilon$ energy density (kinetic and internal).

• Integrating over Ω yields

$$\partial_t \mathsf{E}(t) = 0, \quad \mathsf{E}(t) = \mathsf{E}_{kin}(t) + \mathsf{E}_{int}(t) = \int_{\Omega} \rho(t, x) e(t, x) dx,$$

provided $q \cdot \nu = u = 0$ on $\partial \Omega$

Basic Laws from Thermodynamics

- Ansatz : free energy $\psi = \psi(\rho, \theta)$.
- Then $\epsilon = \psi + \theta \eta$ internal energy,

 $\eta = -\partial_{ heta}\psi$ entropy,

$$\kappa = \partial_{\theta} \epsilon = -\theta \partial_{\theta}^2 \psi$$
 heat capacity.

• classical case, Clausius-Duhem equation reads as

 $\rho(\partial_t + u \cdot \nabla)\eta + \operatorname{div}(q/\theta) = S : \nabla u/\theta - q \cdot \nabla \theta/\theta^2 + (\rho^2 \partial_\rho - \pi)(\operatorname{div} u)/\theta \quad \text{in } \Omega.$

- Hence, entropy flux Φ_η is given by $\Phi_\eta := q/ heta$
- entropy production by

$$\theta r := S : \nabla u - q \cdot \nabla \theta / \theta + (\rho^2 \partial_{\rho} - \pi) (\operatorname{div} u)$$

 ${\ensuremath{\circ}}$ boundary conditions employed yield that for total entropy N we have

$$\partial_t \mathsf{N}(t) = \int_{\Omega} r(t, x) dx \ge 0, \quad \mathsf{N}(t) = \int_{\Omega} \rho(t, x) \eta(t, x) dx,$$

provided $r \ge 0$ in Ω .

- div *u* has no sign, hence $\pi = \rho^2 \partial_{\rho} \psi$, Maxwell's relation.
- this leads to $S: \nabla u \ge 0$ and $q \cdot \nabla \theta \le 0$.

Summary

- Summarizing : conservation of energy and total entropy is non-decreasing provided these conditions, Maxwell and (BC) are satisfied, independent of special form of stress S and heat flux q
- Thus, these conditions ensure thermodynamical consistency of the model.
- example : classical laws due to Newton and Fourier :

$$S := S_N := 2\mu_s D + \mu_b \text{div } u I, \quad 2D = (\nabla u + [\nabla u]^{\mathsf{T}}), \quad q = -\alpha_0 \nabla \theta.$$

• thermodynamically consistent if $\mu_s \ge 0$, $2\mu_s + n\mu_b \ge 0$ and $\alpha_0 \ge 0$

Some Physics for Oceanic and Atmosheric Flows

- thin spherical layer of fluid
- Geostrophic and Hydrostatic Approximation
 - first dominating force is gravity : hydrostatic law

$$\varrho = \varrho(x_3), \quad p = p_0(x_3) \text{ with } (p_0)_{x_3} = -\varrho g$$

- aspect ratio ; $\delta = \frac{D}{L}$
- Coriolis force : time for fluid with speed u to cross distance L is L/U
- ► if this time is small compared to period of rotation |Ω|⁻¹, fluid does not feel rotation
- rotation important only if Rossby number $\varepsilon = \frac{U}{2|\Omega|L}$ is small, realistic range $\varepsilon \sim 0.05$
- balance between gravity and rotation :

$$(\Omega \cdot \nabla) u - \Omega \nabla \cdot u = - \frac{\nabla \varrho \times \nabla \rho}{2\varrho^2}$$

if δ small, then only vertical component of rotation $f = |\Omega| \sin \theta$ is dynamically significant. Hence :

$$(fe_3 \cdot \nabla)u_h = -\frac{(\nabla \varrho \times \nabla p)_h}{2\varrho^2}$$

 $fe_3 \cdot u_h = 0$

The Taylor-Proudman Theorem and Approximations

- if fluid is barotropic, then $(fe_3 \cdot \nabla)u_h = 0$
- if fluid is incompressible, then $(fe_3 \cdot \nabla)u_3 = 0$
- this means all 3 components of velocity are independent of x_3 . This is the Taylor-Proudman theorem
- specify to Coriolis force : $2\varrho\Omega \times u = -\nabla p \varrho ge_3$
- δ small implies that only fe_3 is dynamically significant. This yields

$$u_h = \frac{1}{f \varrho_0} e_3 \times \nabla p$$
 geostrophic approximation
 $\varrho g = -\partial_3 p$ hydrostatic approximation

- geostrophic approximation : balance between $\nabla_H p$ and horizontol component of Coriolis force
- hydrostatic approximation : balance between $\partial_3 p$ and gravity

Departures from Geostrophy : Waves in Shallow Water

- shallow layer of incompressible and inviscid fluid : fluid described by height H : fluctuation η around refence height H_0 , purely horizontal velocity u
- δ small yields $u \cdot \nabla(f/H_0) = 0$
- pertubations of (η, u) yield

$$\begin{aligned} (\eta_{tt} + f^2 \eta + \nabla \cdot (c_0^2 \nabla \eta))_t &- gf((H_0)_x \eta_y - (H_0)_y \eta_x) = 0 \\ (u_1)_{tt} + f^2 u_1 &= -g(\eta_{xt} + f \eta_y) \\ (u_2)_{tt} + f^2 u_2 &= -g(\eta_{yt} - f \eta_x) \end{aligned}$$

with shallow water speed $c_0 = (gH_0)^{1/2}$.

- consider solutions of form $\exp(i[\sigma t + k_1x_1 + k_2x_2])$
- gravity waves : Poincaré waves : $\sigma^2 = f^2 + c_0^2 k^2$
- Kelvin waves : $\sigma^2 = c_0^2 k_1^2$
- planetary waves : Rossby waves : ...

Effects of Stratification

- recall hydrostatic equilibrium : $\varrho = \varrho(x_3), \quad p = p_0(x_3) \text{ with } (p_0)_{x_3} = -\varrho g$
- $\partial_{tt} u_3 + N^2 u_3 = \varrho^{-1} \partial_{t3} p'$ with
- $N^2 = -g \varrho^{-1} \partial_3 \varrho_0$ buoyancy frequency

Dissipation from viscosity

- how to represent frictional forces \mathcal{F} ?
- ${\mathcal F}$ proportional to abla S, S stress tensor, coefficient is viscosity u
- $\frac{\mathcal{F}}{\varrho} \sim \frac{\nu U}{L^2}$
- Ekman number *E* : ratio between frictional force per unit mass to Coriolis acceleration

•
$$E = \frac{\nu U/L^2}{1\Omega U} = \frac{\nu}{2\Omega L^2}$$

Influence of Boundary Conditions

- so far : rotational effects studied in absence of boundaries
- example : stress induced by wind on ocean surface induces so-called Ekman transport
- Ekman flow causes mass to flow horizontally into some region and out of others
- This results vertical motion, e.g. vertical motion away from boundary in order to conserve mass
- vertical velocity produced is called Ekman pumping : this velocity distorts density field of ocean and causes wind-driven currents
- also bottom friction

Equation I : Equations of Navier-Stokes with Coriolis force

Simplifications : fluid incompressible, isothermal, no hor./vertical scaling but rotational effects

• I observer in non-rotating inertial frame. Then :

$$\left(\frac{dr}{dt}\right)_{I} = \left(\frac{dr}{dt}\right)_{R} + \Omega \times r$$

- Thus $u_I = u_R + \Omega \times r$
- Newton : Forces equal acceleration in inertial frame, thus

$$\left(\frac{du_I}{dt}\right)_I = \left(\frac{du_I}{dt}\right)_R + \Omega \times u_I = \left(\frac{du_R}{dt}\right)_R + 2\Omega \times u_R + \Omega \times (\Omega \times r) + \frac{d\Omega}{dt} \times r$$

• write centrifugal force as gradient : $\Omega \times (\Omega \times r) = -\nabla \frac{|\Omega \times r|^2}{2}$

$$u_t - \Delta u + (u \cdot \nabla)u + 2\Omega \times u + \nabla p = f, \text{ in } [0, T] \times \Omega$$

div $u = 0, \text{ in } [0, T] \times \Omega$
 $u = 0, \text{ in } [0, T] \times \partial \Omega$
 $u(0) = u_0, \text{ in } \Omega$

Equation II : Hydrostatic Approx. : Primitive Equations

Primitive equations are fundamental model in geophysical flows, introduced by Lions, Temam and Wang in 1992-1993

The domains M^a and M^s are open submanifolds of $S^2 \times \mathbb{R}$. We denote by M any one of the domains M^a or M^s . The Riemannian geometry of M is the same as that of $S^2 \times \mathbb{R}$ or $S^2 \times (0, 1)$. The tangent space $T_{(q,\xi)}M$ of M at $(q, \xi) \in M$ can be decomposed into the product of T_qS^2 and \mathbb{R} as follows

$$T_{(q,\xi)}M = T_q S^2 \times \mathbb{R}.$$
 (1.6)

Therefore, the Riemannian metric g_M on M is given by

- both are submanifolds in the spherical coordinates $(x^1, x^2, x^3) = (\theta, \varphi, \xi)$,
- Riemannia metric g_{M_1} on M:

$$g_{\mathcal{M}}((q,\xi),(v_1,w_1),(v_2,w_2)) \stackrel{(g_{ij})}{=} \stackrel{=}{\leftarrow} g_{\mathbb{S}^2}(q,v_1,v_2) + w_1^{(1.8)}w_2, \quad v_1,v_2 \in T^2\mathbb{S}, w_1,w_2 \in \mathbb{R}$$

Primitive Equations on this manifold

scaling argument taking into account different horizontal and vertical dimensions yields

$$\begin{cases} \partial_t v + \boldsymbol{u} \cdot \nabla v - \Delta v + \nabla_H \pi &= f, & \text{in } M \times (0, T), \\ \text{div } \boldsymbol{u} &= 0, & \text{in } M \times (0, T), \\ \partial_t \tau + \boldsymbol{u} \cdot \nabla \tau - \Delta \tau &= g_\tau, & \text{in } M \times (0, T), \\ \partial_z \pi + 1 - \beta_\tau (\tau - 1) &= 0, & \text{in } M \times (0, T), \end{cases}$$

- velocity u = (v, w), where $v = (v_1, v_2)$ denotes the horizontal component and w the vertical one
- simplifying : consider $\Omega = G \times (-h, 0)$ where $G = (0, 1) \times (0, 1)$
- Boundary conditions :

$$\begin{cases} \partial_z v = 0, \quad w = 0, \quad \partial_z \tau + \alpha \tau = 0, \quad \text{on } \Gamma_u \times (0, \infty), \\ v = 0, \quad w = 0, \quad \partial_z \tau = 0, \quad \text{on } \Gamma_b \times (0, \infty), \\ v, \pi, \tau, \sigma \quad \text{are periodic} \quad \text{on } \Gamma_I \times (0, \infty), \end{cases}$$

where

$$\Gamma_u = G \times \{0\}, \quad \Gamma_b = G \times \{-h\} \text{ and } \Gamma_l = \partial G \times (-h, 0),$$

and $\alpha > 0.$

Isothermal Situation

In isothermal situation, primitive equations are given by

$$\partial_t v + \boldsymbol{u} \cdot \nabla v - \Delta v + \nabla_H \pi = f \quad \text{in } \Omega \times (0, T),$$

$$\partial_z \pi = 0 \quad \text{in } \Omega \times (0, T), \quad (1)$$

$$\operatorname{div} \boldsymbol{u} = 0 \quad \text{in } \Omega \times (0, T),$$

$$\boldsymbol{v}(0) = a.$$

•
$$\Omega=G imes(-h,0)$$
, where $G=(0,1)^2$, $h>0$

System is complemented by the set of boundary conditions

$$\begin{array}{lll} \partial_z v &= 0, & w = 0 & \text{on } \Gamma_u \times (0, T), \\ v &= 0, & w = 0 & \text{on } \Gamma_b \times (0, T), \\ u, \, \pi \text{ are periodic} & \text{on } \Gamma_I \times (0, T). \end{array}$$

(2)

• $\Gamma_u := G \times \{0\}, \ \Gamma_b := G \times \{-h\}, \ \Gamma_I := \partial G \times [-h, 0]$

Equation III : Stratified Flows

Thermal disturbance about mean state in hydrostatic balance :

$$\begin{cases} \partial_t v + (v \cdot \nabla)v - \nu \Delta v + \nabla \pi - \Omega e_3 \times v &= \theta e_3 + g, & \text{in } \mathbb{R}^3 \times (0, T), \\ \partial_t \theta + (v \cdot \nabla)\theta - \kappa \Delta v &= N^2 v_3 + h, & \text{in } \mathbb{R}^3 \times (0, T), \\ \text{div } v &= 0, & \text{in } \mathbb{R}^3 \times (0, T). \end{cases}$$

- *N* bouyancy frequency
- assume $\mu := \frac{\Omega}{N}$ fixed

Equation IV : Ekman Boundary Layers

The Navier-Stokes-Coriolis equations admits an explicit stationary solution (u_E, p_E) :

$$u_E(x_3) := (u_E^1(x_3), u_E^2(x_3), 0) p_E(x_2) := -\omega u_{\infty} x_2$$

with

$$\begin{array}{ll} u_E^1(x_3) & := u_\infty (1 - e^{-\frac{x_3}{\delta}} \cos(\frac{x_3}{\delta})) \\ u_E^2(x_3) & := u_\infty e^{-\frac{x_3}{\delta}} \sin(\frac{x_3}{\delta}), \end{array}$$

where $\delta := (\frac{2\nu}{|\omega|})^{1/2}$ thickness of boundary layer

- stationary solution goes back to swedish oceanograph V. Ekman, 1905
- in his honour : Ekman spiral
- study here : stability properties of Ekman spiral
- many more examples : quasigeostrophic equations, ...

Deterministic Perturbations

Let (u, p) be a solution of Navier-Stokes-Coriolis system in halfspace and set

 $v := u - u_E, \qquad q := p - p_E$

Then (v, q) satisfies the equation

$$\begin{array}{rcl} v_t - \Delta v + \omega e_3 \times v + (u_E \cdot \nabla) v + v_3 \frac{\partial u_E}{\partial x_3} + v \cdot \nabla v + \nabla q &=& 0, \, x \in \mathbb{R}^3_+, t > 0 \\ & \quad \text{div } v &=& 0, \, x \in \mathbb{R}^3_+, t > 0 \\ v(t, x_1, x_2, 0) &=& 0, \, x_1, x_2 \in \mathbb{R}, t > 0 \\ v(0, x) &=& u_0(x) \end{array}$$

We say that u_E is nonlinearly stable if above equation admits a "global solution" v such that $v(t) \rightarrow 0$ as $t \rightarrow \infty$ in a certain sense.

Stochastic Perturbations

Consider stochastic analogue in layer $D := \mathbb{T}^2 \times (0, b)$

$$\begin{cases} du_t = [\nu \Delta u_t - \omega(e_3 \times u_t) - (u_t \cdot \nabla)u_t + \nabla p_t]dt + dW_t \\ \text{div } u_t = 0 \\ u_t(x_1, x_2, 0) = 0 \\ u_t(x_1, x_2, b) = e_1 \cdot u_b \end{cases}$$

• $(W_t)_{t\geq 0}$ is *H*-valued *Q*-Wiener process, where $H := L^{2,per}_{\sigma}(D)$ defined on stochastic basis $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$

Consider stochastic perturbations u_t of u_b^E , i.e.

$$v_t = u_t + u_b^E, \qquad q_t = p_t + p_b^E$$

Mathematical Analysis I : Navier-Stokes-Coriolis

Strategy for strong well-posedness for Navier-Stokes :

• write equations of Navier-Stokes as Evolution Equation

$$u'(t) - Au(t) = -P[u(t) \cdot \nabla)u(t)$$

in Banach space $L^p_{\sigma}(\Omega)$, where

- $A = P\Delta$, Stokes operator
- P, Helmholtz projection
- rewrite evolution equation as integral equation

$$u(t) = e^{tA}u_0 - \int_0^t e^{(t-s)A}P[(u(s) \cdot \nabla)u(s)]ds$$

- solve integral equation via fixed point methods or iteration scheme
- Find function space F in which iteration scheme

•
$$u_1(t) = e^{tA}u_0$$

- $u_{n+1}(t) = e^{tA}u_0 \int_0^t e^{(t-s)A} P[(u_n(s)\nabla)u_n(s)] ds$ converges.
- important : properties of Stokes operator and Stokes semigroup

Unique, Strong solutions for Equations of Navier-Stokes

Assume $\Omega \subset \mathbb{R}^3$ bounded, $\partial \Omega$ smooth

- Fujita-Kato : if either $u_0 \in D(A)^{1/4}$ or interval of existence for T is sufficiently small, then there exists a unique, strong solution on [0, T).
- in particular : L^2 -situation : $u_0 \in \dot{H}^{1/2}$
- Extension of iteration schema on scaling invariant function spaces
- key results by Y. Giga '86, T. Kato : $u_0 \in L^p_{\sigma}(\Omega)$ for $p \geq 3$
- Cannone-Meyer : Well-posedness for $u_0 \in B^{-1+3/p}_{p,\infty}(\mathbb{R}^3)$
- Koch-Tataru : Well-posedness for $u_0 \in BMO^{-1}(\mathbb{R}^3)$
- Bourgain-Pavlovic : Ill-posedness for $u_0 \in B^{-1}_{\infty,\infty}(\mathbb{R}^3)$, i.e. solution operator $u_0 \mapsto u(t)$ is not continuous with respect to $\|\cdot\|_{B^{-1}_{\infty,\infty}}$
- global strong solution provided n = 2

Navier-Stokes-Coriolis

Recall

$$u_t - \Delta u + (u \cdot \nabla)u + \Omega e_3 \times u + \nabla p = f, \text{ in } [0, T] \times \mathbb{R}^3$$

div $u = 0, \text{ in } [0, T] \times \Omega$
 $u(0) = u_0, \text{ in } \Omega$

- Babenko, Mahalov, Nikolenco : pioneering result on global well-posedness for large data provided Ω is large enough
- global well-posedness result Chemin, Desjardins, Gallagher, Grenier :
- let $u_0 \in H^{1/2}(\mathbb{R}^3)$ with div $u_0 = 0$. Then exists $\Omega_0 > 0$ such that for all $\Omega \ge \Omega_0$ the (NSC)-equation admits a unique, global mild solution
- surprising : no smallness condition for u_0
- proof relies on dispersive estimates for linear semigroup $e^{tA_{SCE}}$

$$e^{tA_{SCE}}f = e^{i\Omega t \frac{R_3}{\Delta^{1/2}}} [e^{t\Delta(I+R)f}] + e^{-i\Omega t \frac{R_3}{\Delta^{1/2}}} [e^{t\Delta(I-R)f}]$$

Strichartz Estimates by Koh, Lee, Takada Let $2 \le q \le \infty$, $2 \le r < \infty$ satisfy $1/q + 1/r \le 1/2$. Then $\|e^{i\Omega t \frac{R_3}{\Delta^{1/2}}} f\|_{L^q(0,\infty);L^r(\mathbb{R}^3)} \le C|\Omega|^{-1/q} \|f\|_{H^{3/2-3/r}}$

- Remark : no smoothing in spatial variable
- Further results : global solutions uniform in Ω : $u_0 \in FM_0^{-1}(\mathbb{R}^3)$, $u_0 \in H^{1/2}(\mathbb{R}^3)$,

Open Questions

• dispersive estimates for domains with boundaries

Mathematical Analysis II : Primitive Equations

- '92-'95 : full primitive equations introduced by Lions, Temam and Wang, existence of a global weak solution for a ∈ L².
- Uniqueness question seems to be open
- O1 : Guillén-González, Masmoudi, Rodiguez-Bellido : existence of a unique, local, strong solution for a ∈ H¹
- '07, Cao and Titi : breakthrough result : existence of a unique, global strong solution for arbitrary initial data $a \in H^1$
- Aim : show existence of a unique, global strong solution to primitive equations for data *a* having less differentiability properties than H^1 .

Strategy of *L^p*-Approach

- solution of the linearized equation is governed by an analytic semigroup T_p on the space X_p
- X_p is defined as the range of the hydrostatic Helmholtz projection $P_p: L^p(\Omega)^2 \to L^p_{\overline{\sigma}}(\Omega)^2$
- This space corresponds to solenoidal space $L^{p}_{\overline{\sigma}}(\Omega)$ for Navier-Stokes equations
- generator of T_p is $-A_p$ called the hydrostatic Stokes operator.
- rewrite primitive equations as

$$\begin{cases} v'(t) + A_p v(t) = P_p f(t) - P_p (v \cdot \nabla_H v + w \partial_z v), & t > 0, \\ v(0) = a. \end{cases}$$

• consider integral equation

$$v(t)=e^{-tA_p}a+\int_0^t e^{-(t-s)A_p}\bigl(P_pf(s)+F_pv(s)\bigr)\,ds,\qquad t\geq 0,$$

where $F_p v := -P_p(v \cdot \nabla_H v + w \partial_z v)$

Strategy of *L^p*-approach

- show that v is unique, local, strong solution, i.e. $v \in C^1((0, T^*]; X_p) \cap C((0, T^*]; D(A_p)), p \in (1, \infty)$
- Hence, one ontains existence of a unique, global, strong solution for arbirtrary a ∈ [X_p, D(A_p)]_{1/p} for 1
- $\sup_{0 \le t \le T} \|v(t)\|_{H^2(\Omega)}$ is bounded by some constant $B = B(\|a\|_{H^2(\Omega)}, T)$ for any T > 0.
- proof of global H^2 -bound for v
- in addition : $\|v(t)\|_{H^2(\Omega)}$ is decaying exponentially as $t \to \infty$.
- Recent Theorem :

Let $p \in (1, \infty)$, $a \in V_{1/p,p}$ and $f \equiv 0$. Then there exists a unique, strong global solution (v, π) to primitive equations within the regularity class

 $v \in C^1((0,\infty); L^p(\Omega)^2) \cap C((0,\infty); W^{2,p}(\Omega)^2), \pi \in C((0,\infty); W^{1,p}(G) \cap L^p_0(G)).$

Moreover, the solution (v, π) decays exponentially, i.e. there exist constants $M, c, \tilde{c} > 0$ such that

 $\|\partial_t v(t)\|_{L^p(\Omega)} + \|v(t)\|_{W^{2,p}(\Omega)} + \|\pi\|_{W^{1,p}(G)} \le Mt^{-\tilde{c}}e^{-ct}, \quad t>0.$

Open questions

- rough data ?, $a \in L^{\infty}$?
- realistic domains : domains with "islands"
- fluid-structure interaction : iceberg swimming in hydrostatic fluid
- moving iceberg is melting, Stefan type problems

Mathematical Analysis III : Ekman Layers

- Consider above perturbated equation as evolution equation in $L^p_{\sigma}(\mathbb{R}^3_+)$
- Rewrite perturbated equation in $L^p(\mathbb{R}^3_+)$ as

$$u_t + A_{SCE} u + P(u \cdot \nabla u) = 0, \qquad t > 0,$$

$$u(0) = u_0$$

 $A_S u$ $:= P \Delta u$,Stokes Operator $A_C u$ $:= P \omega e_3 \times u$,Coriolis Operator $A_U u$ $:= P [u = \nabla u]$ $\nabla u = u^{\partial u_F}$

 $A_E u := P[u_E \cdot \nabla)u + u_3 \frac{\partial u_E}{\partial x_3}]$ Ekman Operator

 $A_{SCE} := A_S + A_C + A_E,$

Stokes-Coriolis-Ekman

- Define Reynolds number as $R := \frac{u_{\infty}\delta}{\nu}$
- Stability problem : there exists critical Reynolds number R_c such that
 - $R < R_c \implies$ solution is stable
 - $R > R_c \implies$ solution is unstable
 - construct suitable weak solution which allows to deduce asymptotic properties

Idea of construction of such a weak solutions Consider Yosida approximation by operator J_k

$$J_k := k(k - A_{SCE})^{-1}, \quad k \in \mathbb{N}.$$

and set

$$w_{0k} := J_k w_0$$
 and $F_k w := -P(J_k w \cdot \nabla) w$

and construct approximate solutions w_k for small t by solving the integral equation

$$w_k(t) = e^{tA_{SCE}} w_{0k} + \int_0^t e^{(t-s)A_{SCE}} F_k w_k(s) ds.$$

in the Banach space $X := C([0, T]; D(A_{SCE}^{1/2}))$

Construction in four steps :

- Step 1 : existence of an approximate solution for small *t*
- Step 2 : existence of an approximate solution for given large T > 0
- Step 3 : extract weakly converging subsequence
- Step 4 : subsequence fulfills perturbed equations

Stability Results for Ekman spiral

Assume Reynolds number $R = \frac{u_{\infty}\delta}{\nu}$ is small. Then

• for all $w_0 \in L^2_{\sigma}(\mathbb{R}^3_+)$ there exists a weak solution to perturbed equation with $w(0) = w_0$ satisfying

$$\lim_{T\to\infty}\int_{T}^{T+1}||w(s)||_{H^1}ds=0$$

- Giga et al : stability criteria for non-decaying perturbations in other function spaces
- determine how $\sigma(A_{SCE})$ changes with Reynolds number
- instabilty results in above norm?
- Ekman spirals over spheres?

Mathematical Analysis IV : Stratified Fluids

Recall

$$\begin{cases} \partial_t v + (v \cdot \nabla)v - \nu \Delta v + \nabla \pi - \Omega e_3 \times v &= \theta e_3 + g, & \text{ in } \mathbb{R}^3 \times (0, T), \\ \partial_t \theta + (v \cdot \nabla)\theta - \kappa \Delta v &= N^2 v_3 + h, & \text{ in } \mathbb{R}^3 \times (0, T), \\ \text{ div } v &= 0, & \text{ in } \mathbb{R}^3 \times (0, T). \end{cases}$$

- assume g, h are peridoc with period T
- do geophysical equations allow for periodic solutions if forces are periodic ?
- Navier-Stokes : yes, for *f* small
- primitive : yes, for f large
- rotating stratified fluids, yes for large f if rotation is large
- use again disperive effect of rotation
- periodic solutions for primitive equation if Δ is replaced by Δ_H ?

Primitive : Periodic Solutions for Large Forces

Aims :

- show existence of strong time-periodic solutions for arbitrary (time-periodic) $f \in L^2(0, \mathcal{T}, L^2(\Omega))$, without assuming any smallness condition on f
- Consequence : analogous result for steady-state solutions

Approach based on three steps :

- construct a suitable weak time-periodic solution v by combining classical Galerkin's method with Brouwer's fixed point theorem.
- show existence of a unique, strong solution u to the initial-value problem for arbitrary $f \in L^2(0; \mathcal{T}; L^2(\Omega))$ and a in a subspace of $H^1(\Omega)$
- look at v as a weak solution to the initial-value problem, employ weak-strong uniqueness argument : This yields $v \equiv u$

Weak and Strong Periodic Solutions

- v is a weak T-periodic solution provided
 - $v \in C(J; L^2(\Omega)) \cap L^2(J; H^1(\Omega))$ is a weak solution
 - v satisfies strong energy inequality

$$\|v(t)\|_{2}^{2}+2\int_{s}^{t}\|\nabla v(\tau)\|_{2}^{2}d\tau \leq \|v(s)\|_{2}^{2}+2\int_{s}^{t}(f(\tau),v(\tau))d\tau$$

•
$$v(t+T) = v(T)$$
 for all $t \ge 0$

A weak *T*-periodic solution *v* is strong if in addition $v \in C(J; H^1(\Omega)) \cap L^2(J; H^2(\Omega))$

Proposition : Let $f \in L^2(J; L^2(\Omega))$ be *T*-periodic. Then there exists at least one weak *T*-periodic solution *v*

Proof : Galerkin procedure and Brouwer's fixed point theorem

Periodic Solutions via Weak-Strong Uniqueness

- Let $f \in L^2(J; L^2(\Omega))$ be *T*-periodic. Then there exists unique global strong solution *u* for arbitrary large $a \in H^1(\Omega)$
- weak-strong uniqueness theorem : u = v
 - ► Idea of Proof :
 - weak theory : there is $t_0 > 0$ with $v(t_0) \in H^1$
 - take $v(t_0)$ as initial data for strong solution u
 - take u as test function
 - for w = v u one has

$$\|w(t)\|_{2}^{2} + \int_{t_{0}}^{t} \|\nabla w(s)\|_{2}^{2} ds \leq C \int_{t_{0}}^{t} [\|\nabla_{H}u(s)\|_{2}^{4} + \|\nabla_{H}u(s)\|_{2}^{2} \|D^{2}u(s)\|_{2}^{2}] \|w(s)\|_{2}^{2} ds$$

- blue term in $L^1(t_0, t)$ due to regularity of strong solutions u
- Gronwall : w = 0
- Theorem : primitive equations admit a strong, periodic solution for non small periodic $f \in L^2(J, L^2)$
- Corollary : primitive equations admit a stationary solution for non small periodic $f \in L^2(J, L^2)$