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Geophysical Flows
Outline of the program

@ General Conservation Laws and 2"9-Law of Thermodynamics

>

>

Conservation of mass, momentum, energy
Entropy

@ Physical understanding of oceanic and atmospheric flows

>

v v.vyYy

>

geostrophic approximation and hydrostratic law

Coriolis force

balance gravitation and rotation : the Taylor-Proudham Theorem
shallow water models

stratified fluids

friction forces and Ekman boundary layers

@ Mathematical Equations

>
>
>
>

>

Navier-Stokes-Coriolis equations
Primitive equations

Ekman layers

Stratified heat-conducting fluids
Quasigeostrophic equations

@ Key Mathematical Results and Open Problems

>

unique, global, strong solvability for large data with /without fast
rotation, periodic solutions for small/large forces, stability issues



Balance Laws for Mass, Momentum and Energy

The balance laws for mass, momentum and energy read as

Otp + div(pu) =0 in Q,
p(Or +u-V)u+Vr=div$s in Q,
p(0r +u-V)e+divg=S5:Vu—ndivu in Q,
u=0, qg-v=0 on 0f2.
@ p density, u velocity, m pressure, € internal energy, S extra stress and
g heat flux.

@ This gives conservation of the total energy since
p(0 +u-V)e+div(g+7u—Su) =0 inQ,

with e := |u|?/2 + € energy density (kinetic and internal).
@ Integrating over 2 yields

DE(t) =0, E(t) = Egin(t) + Eime(t) = /Qp(t,x)e(t,x)dx,

provided g-v =u=0 on 902



Basic Laws from Thermodynamics

@ Ansatz : free energy v = 9(p,0).
@ Then e =1 + 6n internal energy,

n=—0py entropy,
k = Oge = —0051)  heat capacity.
@ classical case, Clausius-Duhem equation reads as
p(Or+u-V)n+div(q/0) = S : Vu/0—q-V/0*+(p*0,—7)(divu)/0 in Q.

@ Hence, entropy flux ®, is given by &, :=q/0
@ entropy production by

Or:=S:Vu—q-V0/0+ (p*0, — 7)(div u)

@ boundary conditions employed yield that for total entropy N we have

8tN(t):/Qr(t,X)dXZO, N(t)z/ﬂp(t,x)n(t,x)dx,

provided r > 0 in €.
@ div u has no sign, hence 7 = pz(‘?pw, Maxwell's relation.
@ thisleadsto S$:Vu>0 and ¢q-V6O <O.



Summary

@ Summarizing : conservation of energy and total entropy is
non-decreasing provided these conditions, Maxwell and (BC) are
satisfied, independent of special form of stress S and heat flux g

@ Thus, these conditions ensure thermodynamical consistency of the
model.

@ example : classical laws due to Newton and Fourier :
S =Sy :=2usD+ ppdivul, 2D = (Vu+[Vu]"), g=—agVe.

@ thermodynamically consistent if us > 0, 2us + npp > 0 and ag > 0



Some Physics for Oceanic and Atmosheric Flows

@ thin spherical layer of fluid
@ Geostrophic and Hydrostatic Approximation
» first dominating force is gravity : hydrostatic law

0=0(x3), p=po(x3) with (po)x; = —08
» aspect ratio; 0 = %
» Coriolis force : time for fluid with speed u to cross distance L is L/U
> if this time is small compared to period of rotation |Q| 1, fluid does
not feel rotation
» rotation important only if Rossby number ¢ = WUM is small, realistic
range ¢ ~ 0.05

» balance between gravity and rotation :
Vo x Vp
202
if 0 small, then only vertical component of rotation f = |Q|sinf is
dynamically significant. Hence :

(Q-Vu—-QV-u=-—

(VQ X Vp)h

(fe3 . V)Uh = — 2@2

fe3-uh:O



The Taylor-Proudman Theorem and Approximations

@ if fluid is barotropic, then (fe3 - V)u, =0
@ if fluid is incompressible, then (fes - V)uz =0

@ this means all 3 components of velocity are independent of x3. This
is the Taylor-Proudman theorem

@ specify to Coriolis force : 202 X u = —Vp — pges

@ 0 small implies that only fe3 is dynamically significant. This yields

1

up = f—eg, X Vp  geostrophic approximation
90

0g = —0O3p hydrostatic approximation

@ geostrophic approximation : balance between Vyp and horizontol
component of Coriolis force

@ hydrostatic approximation : balance between 03p and gravity



Departures from Geostrophy : Waves in Shallow Water

@ shallow layer of incompressible and inviscid fluid : fluid described by

e 6 6 ¢

height H : fluctuation n around refence height Hy, purely horizontal
velocity u

6 small yields u- V(f/Hy) =0
pertubations of (7, u) yield

(7 + f277 + V- (Cgvﬁ))t — gf((HO)XUy - (HO)ynX) =0
(u1)er + f2U1 = —g(Nee + 1)
(U2)er + f2U2 = _g(nyt — 1)

with shallow water speed ¢y = (gHp)Y/?.

consider solutions of form exp(i[ot + kix; + koxz])
gravity waves : Poincaré waves : 0% = f° + cgk2
Kelvin waves : 02 = = k2

planetary waves : Rossby waves : ...



Effects of Stratification

@ recall hydrostatic equilibrium :
0=0(x3), p=po(x3) with (po)x; = —0g

o attU3 + N2U3 = Q_13t3p’ with
@ N° = —gp 10500 buoyancy frequency



Dissipation from viscosity

@ how to represent frictional forces F 7

@ F proportional to VS, S stress tensor, coefficient is viscosity v
F vU

@ Ekman number E : ratio between frictional force per unit mass to

Coriolis acceleration

—1QU T 2912




Influence of Boundary Conditions

@ so far : rotational effects studied in absence of boundaries

@ example : stress induced by wind on ocean surface induces so-called
Ekman transport

@ Ekman flow causes mass to flow horizontally into some region and out
of others

@ This results vertical motion, e.g. vertical motion away from boundary
in order to conserve mass

@ vertical velocity produced is called Ekman pumping : this velocity
distorts density field of ocean and causes wind-driven currents

@ also bottom friction



Equation | : Equations of Navier-Stokes with Coriolis force

Simplifications : fluid incompressible, isothermal, no hor./vertical scaling
but rotational effects

@ [ observer in non-rotating inertial frame. Then :

(&)= (@)eraxr

@ Thusuy=ur +Q xr
@ Newton : Forces equal acceleration in inertial frame, thus

(G, = (@) axo

d df2
— (%)R+2Qx ur + Q2 x (2 x r)+—dt X r
i : : Qxr|?
@ write centrifugal force as gradient : Q x (2 x r) = _y >2< |

ur —Au+ (u-Vu+2Qxu+Vp = f, in[0,T] xQ
dvu = 0, in[0,T]xQ
u = 0, in0,T]x 0N
u(0) = wuy, in€2




Equation |l : Hydrostatic Approx. : Primitive Equations

Primitive equations are fundamental model in geophysical flows,
introduced by Lions, Temam and Wang in 1992-1993

SLILE
. ///////W/%

Fig. 1.
The domains M® and M are open submanifolds of S x R. We denote by M any one of the
domains M or M*. The Riemannian geometry of M is the same as that of SEx Ror$tx (0, 1).
The tangent space T, , M of M at (g, ) € M can be decomposed into the product of T,,S2 and

R as follows
T, oM =T,SxR. (1.6)

o My =52 (0,1), My = Uy yer, (6, 0) x (—h(0,),0))
@ both are submanifolds of S2 x R
@ Riemannian metric gy on M :

g/\/l((qag)a(vla W1)> (V2, Wz)) — gS2(q7 Vi, V2)+W1W2, Vi, Vo € 7_28, wi, wp € R



Primitive Equations on this manifold

@ scaling argument taking into account different horizontal and vertical
dimensions vyields

( Oiwv+u-Vv—Av+Vyr =f, in M x (0, T),
divu =0, in M x (0, T),

) Ot +u-V1— AT =g/, in M x (0, T),
\ o,m+1—p,(r—1) =0, in M x (0, T),

@ velocity v = (v, w), where v = (v1, v») denotes the horizontal
component and w the vertical one

@ simplifying : consider Q = G x (—h,0) where G =(0,1) x (0,1)
@ Boundary conditions :

( O,v=0, w=0, 9,7+ar=0, onTl, x(0,00),

< v=0 w=0, 0,7=0, on [, x(0,00),
v,m, 7,0  are periodic on [} x (0,00),

where
,=Gx{0}, Tp=Gx{—h} and [, =09G x (—h,0),
and o > 0.



Isothermal Situation
In isothermal situation, primitive equations are given by

Ov+u-Vv—Av+Vyr = f inQx(0,T),
d,m = 0 inQx(0,T),
divu = 0 inQx(0,T),
v(0) = a

@ Q=G x (—h,0), where G = (0,1)?>, h >0

System is complemented by the set of boundary conditions

o,v =0, w=0 on I, x(0,T),
v =0, w=0 on [, x (0, T),
u, ™ are periodic on [, x (0, 7).

@ N, :=Gx {0}, Tp:=Gx{—=h}, T:=0G x[—h,0]

(1)

(2)



Equation Il : Stratified Flows

Thermal disturbance about mean state in hydrostatic balance :

([ Oiv+ (v - Vv —vAv+Vr —Qes x v =fe3+g, in R3 x (0, T),
4 0:0 + (v-V)0 — kAv = N2v3 + h, in R3 x (0, T),
\ divv =0, in R3 x (0, T).

@ N bouyancy frequency

@ assume [ = % fixed



Equation IV : Ekman Boundary Layers

The Navier-Stokes-Coriolis equations admits an explicit stationary
solution (ug, pg) :

ue(xs) = (ug(xs), ug(xs),0)
PE(X2) = —WlUseX2

with
up(x3) = uso(l—e ) cos(%))
uz(x3) = T sin(%2),

where 9 := (| |)1/2 thickness of boundary layer

@ stationary solution goes back to swedish oceanograph V. Ekman,
1905

@ in his honour : Ekman spiral
@ study here : stability properties of Ekman spiral

@ many more examples : quasigeostrophic equations, ...



Deterministic Perturbations

Let (u, p) be a solution of Navier-Stokes-Coriolis system in halfspace and
set
Vi=u—ug,  q:=p—pE

Then (v, q) satisfies the equation

0, x eR3,t>0

vt—Av+we3><v+(uE-V)v+V3%%+v-Vv+Vq

divv = 0,xeR3,t>0
v(t,x1,x2,0) = 0,x3,x R, t>0
v(0,x) = up(x)

We say that ug is nonlinearly stable if above equation admits a “global
solution” v such that v(t) — 0 as t — oo in a certain sense.



Stochastic Perturbations

Consider stochastic analogue in layer D := T? x (0, b)

( duy = [VAur — w(es X uy) — (up - V)uy + Vpe]dt + dW,
div Ug — 0
< ug(x1,x2,0) =0
| Ut(x1,Xx2, b) = e - up

o (W;)e>0 is H-valued Q-Wiener process, where H := L3P (D)
defined on stochastic basis (€2, F, (Ft) >0, P)

Consider stochastic perturbations u; of uf, l.e.

Ve = Up + Up, Gr = pt + pp



Mathematical Analysis | : Navier-Stokes-Coriolis

Strategy for strong well-posedness for Navier-Stokes :
@ write equations of Navier-Stokes as Evolution Equation
u'(t) — Au(t) = —Plu(t) - V)u(t)
in Banach space L5 (), where

» A= PA, Stokes operator
» P, Helmholtz projection

@ rewrite evolution equation as integral equation
t
u(t) = ety — / e(=AP[(u(s) - V)u(s)]ds
0

@ solve integral equation via fixed point methods or iteration scheme

@ Find function space F in which iteration scheme

> Ul(t) = etAUo

> Up1(t) = ePug — fo elt=9)AP[(u,(s)V)u,(s)]ds converges.

@ important : properties of Stokes operator and Stokes semigroup



Unique, Strong solutions for Equations of Navier-Stokes

Assume € C R3 bounded, 99 smooth

*

Fujita-Kato : if either ug € D(A)Y* or interval of existence for T is
sufficiently small, then there exists a unique, strong solution on [0, T).

in particular : [2-situation : uy € HY/?
Extension of iteration schema on scaling invariant function spaces

key results by Y. Giga '86, T. Kato : up € L5(Q2) for p > 3

Cannone-Meyer : Well-posedness for ug € B;£3/p(R3)

Koch-Tataru : Well-posedness for ug € BMO~1(R3)

Bourgain-Pavlovic : lll-posedness for ug € B!, (IR?), i.e. solution
operator ug — u(t) is not continuous with respect to || - || 5-1

global strong solution provided n =2



Navier-Stokes-Coriolis

Recall

ur —Au+ (u-Vu+Qesxu+Vp = f, in[0,T] xR
dvu = 0, in[0,T]xQ
u(0) = wp, in$2

@ Babenko, Mahalov, Nikolenco : pioneering result on global
well-posedness for large data provided 2 is large enough

@ global well-posedness result Chemin, Desjardins, Gallagher, Grenier :

o let uy € HY/?(R3) with div ug = 0. Then exists Qo > 0 such that for
all ©Q > Qg the (NSC)-equation admits a unique, global mild solution

@ surprising : no smallness condition for wuyg

@ proof relies on dispersive estimates for linear semigroup eAsce

Q-3 _iQt_F3
otASCE £ — oA/ [efAUHRI 4 ¢ it [etAU=R)



Strichartz Estimates by Koh, Lee, Takada
let 2 < g<o00,2<r<oosatisfy1/g+1/r <1/2. Then

iQt-18_ _
€™ 272 | La0.00):1r(m3)) < CIQIY I F || -3/

@ Remark : no smoothing in spatial variable

@ Further results : global solutions uniform in Q : ug € FMo_l(]R3),
up < Hl/z(R3),

Open Questions

@ dispersive estimates for domains with boundaries



Mathematical Analysis |l : Primitive Equations

@ '92-'95 : full primitive equations introduced by Lions, Temam and
Wang, existence of a global weak solution for a € L2.

@ Uniqueness question seems to be open

@ '01 : Guillén-Gonzdlez, Masmoudi, Rodiguez-Bellido : existence of a
unique, local, strong solution for a € H*

@ '07, Cao and Titi : breakthrough result : existence of a unique,
global strong solution for arbitrary initial data a € H?

@ Aim : show existence of a unique, global strong solution to primitive
equations for data a having less differentiability properties than H*.



Strategy of LP-Approach

@ solution of the linearized equation is governed by an analytic
semigroup T, on the space X,

@ X, is defined as the range of the hydrostatic Helmholtz projection
P,: LP(Q)? — LE(Q)?

@ This space corresponds to solenoidal space L2(Q) for Navier-Stokes
equations

@ generator of T, is —A, called the hydrostatic Stokes operator.

@ rewrite primitive equations as

{ V' (t) + Apv(t) = Pof(t) — Po(v - Vgv + wdpv),  t>0,
v(0) = a.

@ consider integral equation

t
v(t) = e Pra+ / e_(t_S)AP(pr(s) + Fpv(s)) ds, t >0,
0
where Fpv = —Py(v-Vyv+ wio,v)



Strategy of LP-approach

@ show that v is unique, local, strong solution, i.e.
v € CH((0. T*]: X,) N C((0, T*]; D(A,)). p € (1, )

@ Hence, one ontains existence of a unique, global, strong solution for
arbirtrary a € [Xp,, D(Ap)]1/p for 1 < p < oo provided

@ supo<i<7 ||V(E)||H2(q) is bounded by some constant
B = B(HaHHz(Q), T) forany T > 0.

@ proof of global H?-bound for v

in addition : |[v(t)||42(q) is decaying exponentially as t — oo.

@ Recent Theorem :
Let p € (1,00), a€ Vi, and f =0. Then there exists a unique,
strong global solution (v, ) to primitive equations within the
regularity class

v € CH((0,00); LP(2)?)NC((0, 00); W*P(Q)?), m € C((0,00); WHP(G)NLE(G)).

Moreover, the solution (v, ) decays exponentially, i.e. there exist
constants M, c, ¢ > 0 such that

©

0ev(8)lnc@) + IV()llwesay + Illwroe) < MEEe, £ 0.



Open questions

@ rough data?, a € L7
@ realistic domains : domains with ,,islands”
@ fluid-structure interaction : iceberg swimming in hydrostatic fluid

@ moving iceberg is melting, Stefan type problems



Mathematical Analysis |lI : Ekman Layers

@ Consider above perturbated equation as evolution equation in
P (T3
L5(RY)
. . . 3
@ Rewrite perturbated equation in LP(R3) as

us + Asceu+ P(u-Vu) =0, t >0,

u(0) = ug
Asu = PAu, Stokes Operator
Acu = Pwes X u, Coriolis Operator
Aeu = Plug - V)u + U3%%’§] Ekman Operator
Asce = As+ Ac + AE, Stokes-Coriolis-Ekman

@ Define Reynolds number as R := “055

@ Stability problem : there exists critical Reynolds number R, such that
» R < R. = solution is stable
» R > R. — solution is unstable

» construct suitable weak solution which allows to deduce asymptotic
properties



ldea of construction of such a weak solutions

Consider Yosida approximation by operator Ji
Jio = k(k — Asce)™!, keN.

and set
wok = Jkwp and Fyw := —P(Jew - V)w

and construct approximate solutions wy for small t by solving the integral
equation

t
wi(t) = e"SE gy + / elt=9)AscE £y v (s)ds.
0
in the Banach space X := C([0, T|; D(Aé/cz,:-))

Construction in four steps :

@ Step 1 : existence of an approximate solution for small t

@ Step 2 : existence of an approximate solution for given large T > 0
@ Step 3 : extract weakly converging subsequence
Q

Step 4 : subsequence fulfills perturbed equations



Stability Results for Ekman spiral

Uso O

Assume Reynolds number R = is small. Then

@ for all wy € Lg(]RfL) there exists a weak solution to perturbed
equation with w(0) = wy satisfying

T+1
i / 1w(s)|[ 2 ds = 0

T—o0 T

@ Giga et al : stability criteria for non-decaying perturbations in other
function spaces

@ determine how o(Asce) changes with Reynolds number
@ instabilty results in above norm ?

@ Ekman spirals over spheres?



Mathematical Analysis IV : Stratified Fluids

Recall

[ Ov+ (v - VIV —vAv+Vr —Qes xv =0e3+g, in R3 x (0, T),
4 0:0 + (v-V)) — kAv = N2v3 + h, in R3 x (0, T),
\ divv =0, in R3 x (0, T).

@ assume g, h are peridoc with period T

@ do geophysical equations allow for periodic solutions if forces are
periodic ?

@ Navier-Stokes : yes, for f small

@ primitive : yes, for f large

@ rotating stratified fluids, yes for large f if rotation is large

@ use again disperive effect of rotation

@ periodic solutions for primitive equation if A is replaced by Ay ?



Primitive : Periodic Solutions for Large Forces

Aims :

@ show existence of strong time-periodic solutions for arbitrary

(time-periodic) f € L%(0,7, L%(Q2)), without assuming any smallness
condition on f

@ Consequence : analogous result for steady-state solutions
Approach based on three steps :

@ construct a suitable weak time-periodic solution v by combining
classical Galerkin's method with Brouwer's fixed point theorem.

@ show existence of a unique, strong solution u to the initial-value
problem for arbitrary f € L%(0;T; L?(2)) and a in a subspace of
H ()

@ look at v as a weak solution to the initial-value problem, employ
weak-strong uniqueness argument : This yields v = u



Weak and Strong Periodic Solutions

v is a weak T-periodic solution provided
o ve C(J;L%2(Q)) N L2(J; HH(Q)) is a weak solution

@ v satisfies strong energy inequality

IV(t)]3 +2 / V() 2dr < [[v(s)|B + 2 / (F(7), v(7))dr

@ v(t+ T)=v(T)forallt>0

A weak T-periodic solution v is strong if in addition
v e C(J; HL(Q)) N L2(J; H*(Q2))

Proposition : Let f € L?(J; L?(2)) be T-periodic. Then there exists at
least one weak T-periodic solution v

Proof : Galerkin procedure and Brouwer's fixed point theorem



Periodic Solutions via Weak-Strong Uniqueness

@ Let f € [%(J; L?(Q2)) be T-periodic. Then there exists unique global
strong solution u for arbitrary large a € H1(Q)
@ weak-strong uniqueness theorem : u = v

> ldea of Proof :

» weak theory : there is to > 0 with v(t) € H?
» take v(tp) as initial data for strong solution u
» take u as test function

» for w = v — u one has

IIW(t)||§+/t IIVW(S)H%dSSC/t IV Hu(s)]12 + [V ru(s) |20 u(s) 121l w(s)l2ds

> blue term in L(t, t) due to regularity of strong solutions u
» Gronwall : w =0

@ Theorem : primitive equations admit a strong, periodic solution for
non small periodic f € L?(J, L?)

@ Corollary : primitive equations admit a stationary solution for non
small periodic f € L2(J, [?)



