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TOPICS

1 In terms of an optimized control theory,
the realized dynamics of physical systems take
stationary values of cost functionals.

2 The equations of motion for dissipative systems
are obtained by solving stationary problems
subject to non-holonomic constraints for entropy.

3 The non-holonomic constraints are determined
to satisfy the law of entropy increase, symmetries,
and well-posedness.
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How to describe physics

The time development of a physical system
can be described as a curve C
in configuration space g and time ¢.




Variational principles

A realized motion gives a stationary value of a functional.
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The dynamics of a harmonic oscillator
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Variational calculus of
an action functional
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The relation: Z’? u=0 yields
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Method of Lagrange multiplier
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C C

i N H(q,p,u) = pu — L(q, u)
‘W [ (dg OH dp O OH = dH .
q P
98 sp— (B2 s — Lsut Bt | ar =
/t@ (dt 8p) P (dt+8q R W7 0

H(p,q)=H(p.q.u"(p.q)) N

L where u' (p,q) is the solution of %—H:o.
u

dg_oH dp_ oM
dd Op’ dt  Oq°

Hamilton’s eq.

10



A harmonic oscillator
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Pontryagin’s maximum principle (PMP)

Find an optimized control #” which gives
the stationary value of a cost functional, [ Ldt.

fﬁa
where

H(p.q)=H(p.q.u"(p.q)) .

u’ (p,q) is the solution of %_H _
u
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A dissipative system
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A dissipative system

. | s-entropy
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f-time
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A dissipative system
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A holonomic constraint
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A holonomic constraint
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Method of Lagrange multiplier

/deq— {E—T(s—g)} dt

H(p.,q,s)=H(p,q,s,u"(p,q,s))

where u” (p,g,s) is the solution of %_H ~0.
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A holonomic constraint
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A dissipative system
(A non—holonomic constraint)
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No surface on which the curves lie.
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ds~+Cdqg~+Jdt 1s orthogonal to
the tangent vector of C and

the virtual displacement X = a(0t,0qg,0s).
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A damped oscillator
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Entropy production

/ ds + (dq + Jdt = 0{mm)  — E %
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Lagrangian
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Constraint

Damped Oscillators
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TrdS + Qgdt
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Damped Oscillators
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Space translation symmetr

y The sufficient condition of
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Evaporation

(Gas

34



Evaporation

B Surface energy

—p Eui“f_E(Pa 5) _E(ﬂa Vﬂ)

Mass density p 1s a function of the initial position g.

p=po(q)o(q", % ¢)/o(x", x*, x°)



Evaporation
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Well-posedness

Mathematical models of physical phenomena
should have the properties that

6’H ¥ Y ' (1) A solution exists

' (2) The solution is unique

(3) The solution depends continuously on

o | y . VR J ] the initial conditions and the boundary conditions.
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In order to have a solution, eliminate the extra surface term
by the non-holonomic constraint
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Equations of motion
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Summary

The dynamics of a physical system can be described by a trajectory
in a configuration space. The trajectory is determined by a law of its
tangent vector, i.e., the generalized velocity. In terms of a control theory,
the velocity is regarded as the control parameter which determines the
trajectory. The law of velocity is universalized into a policy of control.
Hamilton’s principle is generalized as an optimal control theory, which
seeks the control giving the stationary value of a cost functional.

In a dissipative system, entropy depends on the time development of
other variables in the configuration space. This relation is given by a set
of non-holonomic constraints. Then the equations of motion are obtained
by solving the stationary condition of a cost functional subject to the non-
holonomic constraints.

In this formulation, physical systems are characterized by the sets of
a functional and non-holonomic constraints. All are consistent with
symmetries and well-posedness. Moreover, the constraint of entropy
satisfies the law of entropy increase. These restrictions define the proper

class for equations of motion in physics.
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