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TOPICS

1 In terms of an optimized control theory,
the realized dynamics of physical systems take
stationary values of cost functionals.

2 The equations of motion for dissipative systems
are obtained by solving stationary problems
subject to non-holonomic constraints for entropy.

3 The non-holonomic constraints are determined
to satisfy the law of entropy increase, symmetries,

 and well-posedness.
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The time development of a physical system 
can be described as a curve C

in configuration space q and time t.

 How to describe physics

t

q
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Variational principles

A realized motion gives a stationary value of a functional.

∫C
L(q , q̇ , t )dt

∂ L
∂q

− d
dt

∂ L
∂ q̇

=0

Euler-Lagrange Eq.

t : time

q
q̇
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The dynamics of a harmonic oscillator

∫C (12 q̇2−1
2

q2)dt

q̈+q=0

(q̇
q)=(cos t

sin t )
t : time

q:position

Euler-Lagrange Eq.
q̇

Action functional
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Variational calculus of
 an action functional

t : time

q
 u
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The relation: yields dq
dt

−u=0
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+)_____________________
 where p=∂ L /∂u

Euler-Lagrange eq. Energy conservation
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Method of Lagrange multiplier

 =

Hamilton’s eq.

∂ ~H
∂u

=0. where u* (p,q) is the solution of   

H ( p ,q)≡~H ( p ,q ,u∗( p , q))
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A harmonic oscillator

Hamilton’s equations

~H ( p ,q ,u)= pu−L(q ,u)

t : time

q

 u

dq
dt

=∂ H
∂ p

= p=cos t

dp
dt

=−∂ H
∂q

=−q=−sin t

H ( p ,q)=1
2

p2+ 1
2

q2

 Put  

L(q ,u)= 1
2

u2−1
2

q2 ,

u∗( p , q)=∂~H
∂u

= p
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Pontryagin’s maximum principle (PMP)

Hamilton’s equations

~H ( p , q , u)= pF (q ,u)−L(q , u)

dp
dt

=−∂ H
∂ q

t 

q
u

 Find an optimized control u* which gives 
 the stationary value of a cost functional, .

where

dq
dt

=∂ H
∂ p

∂ ~H
∂u

=0. u* (p,q) is the solution of   

H ( p ,q)≡~H ( p ,q ,u∗( p , q))
where
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A dissipative system

t:time 

q:position

∫C 0

dq−u dt=0
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A dissipative system

t:time 

s:entropy

∫C 0

ds+ζ dq+J dt=0
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A dissipative system

t:time 

q:position

s:entropy

t:time 

s:entropy

q:position

∫C 0

ds+ζ dq+J dt=0
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s

q

A holonomic constraint

Where

C
0

C
α

∫C 0

ds+ζ dq+J dt=0 ∫C 0
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s

q

A holonomic constraint

where

C
0

C
α
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s

q

C
0

C
α

where
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+)_____________________
 where  , , and  .



21t 

s

q

Method of Lagrange multiplier

 where u* (p,q,s) is the solution of   

H ( p ,q , s)≡~H ( p ,q , s ,u∗( p ,q , s))

s−g (q , t )=0

Equations of motion

∂ ~H
∂u

=0.
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t 

s

q

A holonomic constraint

where

C
0

C
α

＝

C
0
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t:time 

s:entropy

q:position

No surface on which the curves lie.

q:position

s:entropy

A dissipative system
(A non−holonomic constraint)
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t 

s

q

ds+ζdq+Jdt is orthogonal to
the tangent vector of C

0 
and

the virtual displacement X = α(δt,δq,δs).

C
0

C
α

C
0

ds+ζdq+Jdt
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+)_____________________
 where  , , and  .
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A damped oscillator

t:time 

s:entropy

q:position

~H ( p ,q ,u)= pu−(1
2

u2−1
2

q2)

dq
dt

= p dp
dt

=−q− f

H ( p ,q)=1
2

p2+ 1
2

q2

Equations of motion:
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Entropy production

t:time 

s:entropy

q:position

Thus ζ is opposite sign of dq/dt.

ds
dt

=−ζ dq
dt

−J

J
 s

↓ dq/dt

↑　ζ

 >0
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Damped Oscillators

 m1 

k

s
 m2 

S

Lagrangian

Constraint
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Damped Oscillators

 m1 

k

s
 m2 

S

dqi

dt
= pi

dpi

dt
=∓k (q1−q2)+ f i

mi ui= pi

=

=

=
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Space translation symmetry

t

    

qi

Thus, 

Y=α(g
q
,g

s
,g

t
)

LY (Tds+ f i dqi+Q dt )=0
LY=(d ι Y +ι Y d )where 

The sufficient condition of

 is
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Evaporation

Liquid　　　Gas

latent heat

Su
rf
ac
e 

te
ns
io
n
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Evaporation
Surface energy

ρ

質
量
密
度

radius

Mass density ρ is a  function of the initial position q. 

The Lagrange derivative of the initial position q is zero.

Then we have

ρ
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Evaporation
Surface energy

ρ

質
量
密
度

radius

ρ
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The surface term imposes
an extra boundary condition.

+

Taking the variation of 

=

 -            where

yields 　δ
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e j

i ≡δ ik (∂ j uk+∂k u j)
 where

In order to have a solution, eliminate the extra surface term
by the non-holonomic constraint

 σ
j
ie

i
j    

Well-posedness
Mathematical models of physical phenomena
should have the properties that
(1) A solution exists
(2) The solution is unique
(3) The solution depends continuously on 
the initial conditions and the boundary conditions.
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Equations of motion

∂t (ρ ui)+∂ j(ρ u j ui+Π i
j+σ i

j)−γ i=0

Π i
j≡⟦P−ρ T ∂k ( 1

T
∂ E

∂∂k ρ )+ρ ∂ E
∂ρ −E⟧δ i

j+ ∂ E
∂∂ j ρ

∂i ρ
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Summary
The dynamics of a physical system can be described by a trajectory

in a configuration space. The trajectory is determined by a law of its
tangent vector, i.e., the generalized velocity. In terms of a control theory,
the velocity is regarded as the control parameter which determines the
trajectory. The law of velocity is universalized into a policy of control.
Hamilton’s principle is generalized as an optimal control theory, which
seeks the control giving the stationary value of a cost functional.

In a dissipative system, entropy depends on the time development of
other variables in the configuration space. This relation is given by a set
of  non-holonomic constraints. Then the equations of motion are obtained
by solving the stationary condition of a cost functional subject to the non-
holonomic constraints.

In this formulation, physical systems are characterized by the sets of
a functional and non-holonomic constraints. All are consistent with
symmetries and well-posedness. Moreover, the constraint of entropy
satisfies the law of entropy increase. These restrictions define the proper
class for equations of motion in physics.
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