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Putting the D in M℞MHD
a prescription for all that ails ideal MHD!



Why and how to fix Ideal MHD?
• Ideal MHD is overconstrained

– No heat transport along field lines
– No reconnection so islands or chaos cannot form
– Thus inapplicable to hot and 3D plasmas!
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• Fix by removing the bad constraints and keeping 
the good, doing more with less!



MRxMHD:  M stands for Multi-region (aka waterbag)
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q ∃ transport interfaces, Ii or Γi,j, or  
∂Ωi,j (e.g. nested tori or island 
separatrices), that act like sheets of 
ideal-MHD plasma 

q Plasma relaxes (in some general-
ized Taylor sense) in regions Pi (or 
Ωi) bounded by the interfaces

q Only a subset of ideal-MHD 
invariants apply

Rx stands for Relaxed; ..D stands for Dynamics 
Fundamental postulates of new 
general reformulation of MHD:



SPEC (currently) uses MRxMHS, not MRxMHD:

� Taylor relaxation energy principle
� constant pressure in each region 
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MRxMHS = Multi-region Relaxed MagnetohydroStatics (i.e. equilibrium theory)

MRxMHD = Multi-region Relaxed MagnetohydroDynamics

New approach::    use Hamilton’s Principle — stationarity of 
time-integrated Lagrangian
➮ constant temperature in each region 
➮ supports sound waves within relaxation regions as well as 
radially compressible and Alfvén modes + tearing
➮ can treat development of resonant current sheets
➮ can add equilibrium flow to SPEC and will be basis for a 
new time-evolution waterbag code

Ref. Stuart Hudson’s talk yesterday



MRxMHD Lagrangian is kinetic energy minus 
MHD potential energy + constraint terms:
• MHD Lagrangian density in region i
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• Constrained Lagrangian in region i
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In varying action, 𝜌 is constrained holonomically
to the displacement 𝛏 of each fluid element:

• Mass conserved microscopically, i.e. pointwise
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L =
�

i
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• Helicity and entropy constrained macroscopically, 
throughout Ωi, using Lagrange multipliers 𝜇i and 𝜏i, 
while p and A are free fields

• Including vacuum field energy, total Lagrangian is

�� = ��·(��) in �i

• Setting variation of action to 0 gives EL equations:
�

�
Ldt = 0



Equations within Ωi

• Mass conservation (microscopic constraint)
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��

�t
= ��·(�v)

• δp➮ Isothermal equation of state
p = �i� (N.B. �i = C2

si)

• δA➮ Beltrami equation

• ξ ➮ Momentum equation (Euler fluid)

�

�
�v
�t

+ v·�v
�

= ��p

��B = µiB (N.B. � j�B = 0)



Equations on interface Γi,j

• ξ ➮ Force balance
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�
p +

B2

2µ0

�

i,j

= 0

• Surface constraints
ni·B = 0 on ��i

ni· �v�i,j = 0 on ��i,j

• Complete set of equations, consistent 
because derived from single scalar function L



Proving the MRxMHD pudding:
• Q1) What is the MRxMHD spectrum and 

what are the effects of field-line curvature 
and equilibrium mass flow on stability? 

• Q2) When are the current sheets 
topologically stable towards internal 
plasmoid formation (reconnection)? 

• Q3) When do unstable modes saturate at a 
low level or develop nonlinearly into 
explosive events? 
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What happens in static or adiabatic limit?
• ∂t → 0 ➮
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�·(�v) = 0 v·�v = ��i� ln �
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�
➮ only solutions valid for any flowline configuration, 
from nested surfaces to arbitrarily chaotic, are

(N.B. incompressible in limit                ) andv/Cs � 0

➮

Almost isomorphous to B equation: should be 
implementable in SPEC.   Derivable variationally — N. Sato 



Switch on slab boundary ripple to study 
Resonant Magnetic Perturbations (RMPs)
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MRxMHD Hahm-Kulsrud-Taylor (HKT):
Rippled Slab Model for resonant current sheets

Slow (adiabatic) limit



2-region MRxMHD model*
• Simple slab model for 

resonant current sheet 
formation near x = 0 in 
response to symmetrical 
periodic perturbation at 
boundaries x = ±a

• Hahm & Kulsrud (HK), Phys. 
Fluids '85, found 2 solutions:

• shielding current sheet on x = 0 (shown in red)

• island with no current sheet

where Bay is |unperturbed poloidal field| at boundaries and

*From APS DPP 2014 poster,
with Finn-Antonsen helicity



Ø Linearity of Beltrami equation leads to easily solvable, 
linear GS equation (Poisson in small-𝜇 limit.)

Ø Symmetry about, and straightness of,
current sheet at x = 0:  gives most

Ø geometrically simple 2-region relaxation scenario:

• Switch-on:  ripple on upper and lower boundaries 
slowly increased from zero (plane slab) to final 
amplitude

• A shielding current sheet at x = 0 resonance develops
• Kruskal-Kulsrud damping:  evolution through equilibria
• Connect equilibrium sequence by helicity conservation

A good test case for MRxMHD:



Grad-Shafranov-Beltrami equations

where    is cross-sectional average of   ,

with boundary conditions such that    is constant on boundary 
and on cuts.

Grad-Shafranov equation for force-free field in slab geometry:

(Beltrami equation) is satisfied by requiring: 

with

General Solution:

and    obeys a homogeneous Beltrami equation:

,  giving

is plane slab solution,      is the cross-sectional average of      ,



Extension of HK shielding solution 
Helicity conservation requires three extensions of HK 
solution:  Instead of the HK harmonic component � 𝜓1 
we use ansatz

1. is a solution of the Beltrami equation It is only 
harmonic in the small-𝜇 limit. Likewise

2. The term in 𝛾S was introduced in Dewar et al. 2013 to allow 
control of the total current in the sheet

3. The term in    is required for poloidal flux conservation

where:



𝜇 is not fixed

• In plane slab, before ripple is turned on, 
the unperturbed equilibrium flux function is

• As amplitude parameter 𝛼 is increased from 0,         
𝜇 must change to preserve helicity and fluxes:



Current sheet has a strong d.c. 
component

• HK implicitly assumed the total current in the sheet 
was zero, but MRxMHD switch-on shows there is a 
nonzero total current                          proportional to 
𝛾S :



Current sheet reverses for small 
perturbations

Fully shielded case:  Plots of the jump in the 
gradient of ψ, vs. y for μ0 = 1.4 and selected small 
values of α, showing the occurrence of current-
density reversal for the two smallest values.



α = 0.003

α = 0.005

Fully shielded case: Level surfaces of ψ (magnetic surfaces) in the case μ0 = 1.4, α = 0.003, 
showing the occurrence of a small half-islands bisected by the reversed-current section of 
the current sheet.

No current reversal — 
no half-islands

Current reversals cause ½ islands!
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Larger ripple amplitude:

Ripple amplitude:

A
A

A A/2-region MRxMHD Hahm-Kulsrud model: mirror-image ripple 
top and bottom excites modulated current sheet at x = 0

a
/

Current density 
exhibits sign 
reversal

No sign reversal 
so half-islands 
disappear



Fluxes and transform I
α = 0.001

Poloidal flux as a 
function of x0 (= x
along y-axis), showing 
discontinuity in slope 
at x = 0 caused by 
current sheet

Toroidal flux as a function of x
along y-axis, showing 
discontinuity at x = 0 caused 
by half-island. 

(Dashed curves 
are for plane 
slab, α = 0)

Rotational transform (1/q)

showing jump or large 
slope near x0 = 0.



Fluxes and transform II
α = 0.005
(Dashed curves 
are for plane 
slab, α = 0)

Discontinuity in toroidal 
flux has gone as there 
are no half-islands above 
a threshold in α c. 0.0045

Much stronger 
jump in rotational 
transform



Full t-dependence: linear modes in slab
B1 a superpositn
of “Beltrami 
waves” in 
plasma (𝜇 > 0)

and       
vacuum (𝜇 = 0)
New MRxMHD: sound waves in plasma (𝜌0 = const > 0, 
𝜏 > 0)
Old MRxMHS+: 𝜆 = 𝜔2 with 𝜌0 = 𝛿(x-a) ➮ no sound 
waves Hole et al, Nucl Fusion 47, 746 (2007), etc

Alexis Tuen’s MSc thesis 2016



First two eigenvalues, + incompressible 
approximation at very small λ ≡ 𝜔-
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• Dewar, Tuen, Hole: Plasma Phys. Control. Fusion 59, 
044009, (2017)

• Growth rate zero if wall or k.B=0 is at interface
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Detailed Conclusions
• Multi-region generalization of Taylor relaxation has 

been extended to a self-consistent dynamics through 
Hamilton’s Principle of Stationary Action.

• A rippled slab model has been used to illustrate the 
formation of a resonant current sheet as boundary 
ripple is switched on

• For very small ripple amplitudes current reversal 
occurs in the current sheet and unperturbed sheared 
magnetic field exhibits topological change, with small 
half-islands, locking rotational transform to resonant 
value

• For larger ripple amplitude the rotational transform 
jumps across the current sheet



General Conclusion

• Action-based MRxMHD shows great 
promise
– Very simple
– Includes reconnection and flow in natural way

• 1st: check physical reasonability of 
predictions in simple models

• 2nd: Extend SPEC to flow; build new time-
evolution and normal mode codes
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