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Abstract
Negotiating the path to fusion power requires 
understanding and controlling a very complex 
system: a plasma sustaining an enormous 
thermal gradient that drives many emergent 
nonlinear phenomena through a variety of self-
organization mechanisms. After a very brief 
overview of the magnetic confinement approach 
to fusion power, some theoretical approaches to 
understanding and modeling these phenomena 
will be reviewed.



Plan
s Part1: Overview of some key concepts

s Magnetic confinement approach to fusion
s Particle and magnetic field dynamics
s Complex open systems
s Magnetohydrodynamic approach
s Field line coordinates
s Linear instabilities & quantum chaos
s Drift wave turbulence and self-organization of 

zonal flows

s Part 2: Current and open problems in 
multi-region relaxation theory



Plasma physics and fusion power

fusion power
— abundant fuel, much 
lower radioactive waste 
than fission power

•Plasma is gas that is hot enough that some or 
all of the atoms are ionized i.e. lose their 
electrons and become electrically conducting

•Much of astrophysics concerns plasma and 
there are many industrial applications, but the 
“holy grail” is the generation of



The Nuclear Valley

Fusion Fission

G. Marx:  Life in the nuclear valley Phys. Educ. 36, 375 (2001)

& terrestrial?

power plant



s Lawson criterion:  To get net energy 
production with D-T need triple product > 10

s Inertial confinement: short time, high pressure
s Magnetic confinement: long time, low (1 atm) 

pressure
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Temperature > 
104 K, i.e. 10 keV

2 approaches to fusion power —
inertial & magnetic confinement



Magnetic field geometry
s Toroidal magnetic confinement requires both 

toroidal and poloidal field components     helically
twisting field lines

s Example shown: axisymmetric system (tokamak)
Toroidal angle !

Poloidal
angle "

Flux surfaces:
labeled e.g. by s or #

On average, a 
magnetic field line: 
rotates poloidally by 
angle $(&)	in each 
toroidal pass

Poincaré section



Tokamak plasmas are often said to be
doughnut shaped



Magnetic field “dynamics” 
s Motion on field lines is dynamical system

where z is a toroidal angle
s System is Hamiltonian (Morrison, March 22) 
s Analyze with flux-preserving return map to 

Poincaré section z = 0:

ṙ � dr/d� � B

Nonaxisymmetric (3-D) fields 
are not generically 
integrable, i.e. some points 
do not lie exactly on flux 
surfaces (e.g. KAM* invariant
tori). Instead follow chaotic
orbits in island separatrices.
*Kolmogorov, Arnol’d & Moser

invariant 
torus:

island:

= (average 
rotation angle 
per return)/2)
is rotation
number

�-
�- = 1/2

�- = irrational



Particle dynamics
s Electrons in e.s.* wave H =

p2
x
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Resonant 
velocity:

Region I:  Fast 
passing particles

Region III: Slow 
passing particles

Region II: Trapped 
particles in phase-
space island

s Ions in a tokamak

Like 
physical 

pendulum

*electrostatic

Obey drift equations:
Adiab. invariant
Energy invariant 
Cross-field �B drift

µ = mv2
�/2B

mv2
�/2 + µB

v�B =
µ

q
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B2

“Banana” orbits:



The need for helical twist
s The     drift is also the reason why we need both 

toroidal and poloidal field:
s Having both makes field lines helical
s As conductivity is high along field lines this makes 

surfaces equipotentials and stops plasma drifting to 
the wall

s Tokamaks use a high toroidal current to generate 
the poloidal field, but this can cause dangerous 
disruptions

s Stellarators use 3-D geometric effects instead, thus 
much more robust against disruption

*+



Largest magnetic confinement 
fusion experiment — ITER 

International burning plasma experiment ITER

under construction in Cadarache, France

http://www.iter.org/

Partners: Europe, Japan, China, India, Russia, South Korea, USA



Some other alternative approaches 
(some privately funded!)

s Reversed field 
pinches: low toroidal 
field, self-organized 
helical states (RFX, 
Padua)

s Aneutronic 1p11B rather than DT?

s Spherical 
tokamaks 
(MAST,NSTX)
Compact, 
high-b, where

s Fusion-fission hybrids, 
technically attractive, but 
not politically?

� �
� 2µ0p

B2

�

RT-1 levitated 
dipole, Yoshida 
Lab, Kashiwanoha

Field-Reversed 
Config., Irvine, USA



Open systems:
s “Heat” in:

s Ohmic, rf, neutral & 
beam heating

s fusion reaction products:
3.5 MeV 4He ions (a

particles)
s Matter in:

s neutral beams
s pellet injection
s recycling from walls via 

recombined hydrogen 
atoms + sputtered 
impurities

s “Heat” out:
s thermal (anomalous) 

diffusion from ~108°K @ 
centre of plasma to   
~103°K @ walls

s 14 MeV neutrons
s X-radiation

s Matter out:
s diffusion & advection of 

plasma to walls



Complex systems
s Strongly driven systems exhibit 

turbulence, but also self-organization
s Cross-disciplinary — theory pushes 

boundaries of statistical mechanics, 
nonlinear dynamics, fluid dynamics, 
…



Some approaches to complex 
systems analysis

s Reduce nonequilibrium N-body problem to 
continuum models (fluid, Vlasov etc)

s Find equilibria & periodic orbits in simple cases and 
use nonlinear continuation to follow them to more 
complex cases

s Linearize about these and determine stable and 
unstable normal modes

s Locate stability thresholds/bifurcation points
s Find reduced-dimensionality models on slow 

manifolds
s Use simulations to find phenomena missed by above



Fluid models:  Ideal 
Magnetohydrodynamics (MHD)

s Mass and entropy in each fluid element are 
conserved by mass , & pressure p advection 
equations

s Magnetic flux threading each microscopic loop 
advected by the flow is also conserved (“frozen in”) 
by magnetic field B advection equation

(�t + v·�)� = ���·v

(�t + v·�)p = ��p�·v

(�t + v·�)B = �B· (I�·v ��v)

s Fluid equation of motion
�(�t + v·�)v = ��·

��
p +

B2

2µ0

�
I� BB

µ0

�

NB Divergence of stress tensor includes the          forcej�B



New book(© 2016)

Roger J. Hosking · Robert L. Dewar

Fundamental Fluid 
Mechanics and 
Magnetohydrodynamics



MHD waves & instabilities
s Local dispersion relations for large |k|, small 
k
∥
/k

⊥
(relative to direction of B):

� �2
A = (k·B)2

� �2
S =

�p (k·B)2

µ�1
0 B2 + �p

� �2
F = (µ�1

0 B2 + �p)k2

Alfvén wave:

Slow magneto-
sonic wave:

Fast magneto-
sonic wave:

}� � 0 as k� � 0

/+	0F
2 ≫ 0:		low-0 modes 

cannot involve fast mode.

vg � ��k/�k || B
characteristics propagate 
information parallel to field 

s Normal modes of flow-free equilibria are found from 
eigenvalue problem , where the 
linearized force operator F is Hermitian: eigenvalues 
02 are real, so instability (imaginary 0) only if 02 < 0.

s Thus stability threshold is 0 = 0. (NB 6 denotes fluid 
element displacement. Take 7 8 6 = 0	to exclude fast 
mode.)

��2� = �F·� 02

0
88
8

8

stable 
continua

gap 
mode

unstable eigenvalues



Helically fluted columns/waves
s A flute mode in 

toroidally confined 
plasma has constant 
phase (7 8 : = 0) along 
the helical magnetic 
field lines — nothing 
to do with the the 
musical instrument! Great Colonnade at 

Greco-Roman ruins in 
Apamea, Syria, showing 
helically fluted columns



Ideal-MHD short-wavelength flute-
type instabilities

s All 3 branches of local dispersion relation have 
0; ≥ 0 , so are stable; but Alfvén and slow 
m.s. modes get to instability threshold 0; = 0

when : 8 7 = 0, implying for 
unstable MHD modes beyond standard WKB.

s Suggests anisotropic WKB ansatz

to implement, need special curvilinear coords:

B·�� � 0

� = �̂ exp[iS(r)/�� i�t], B·�S � 0, �̂ slowly varying

Ref: R.L. Dewar & A.H. Glasser, Phys. Fluids 26, 3038 (1983)

where = is inserted for formal asymptotic analysis. When ray 
dynamics is integrable, global spectrum found from EBK (e.g. 
semiclassical, Bohr-Sommerfeld) quantization (see later). 



Straight-Field-line coordinates
s On each toroidal magnetic surface use generalized

(≠ ?) toroidal angle ! and/or generalized poloidal 
angle " such that field lines are straight: 

On	", ! covering space on a magnetic 
surface* & = const, field lines are 
straight lines F ≡ ! − I & " = const.

|̂ q � 1/ �-

NB For irrational q in a 3-D 
system, equilibrium 
quantities change quasi-
periodically along field line

Curvilinear coordinates &, ", !

*Open Question: 
What is “best” 
approximation to 
a broken surface 
in a 3-D system



Ballooning/interchange 
instabilities

s Short-perpendicular-wavelength instabilities 
can be found using the anisotropic WKB 
ansatz                                  , where             ,                 
giving the ballooning equation:

B·⇥
�

k2

µ0B2
B·⇥⇤

�
+

2k·⇥p�B��B·k
B4

⇤ +
�k2

B2
⇥2

k⇤ = 0

⇤ = �⇤ exp(iS/�� i⇥t) �� =
B���

B2

J ≡ K 8 LK is the field-
line curvature vector, 
and K	is the parallel 
unit vector K ≡ :/+.

This is an ordinary differential equation to 
be integrated along each infinite field line 
F = const. Requiring that N decay 
exponentially at ±∞ gives an eigenvalue

problem determining the local dispersion relation 0 = 0Q(F, "Q), 
where "Q ≡ QI/QF. Decay can be due to magnetic shear, or, in  
3-D geometry, Anderson localization due to quasiperiodicity.



Classical Quantum Chaos!
s Quantum chaos refers to random-looking 

eigenvalue spectrum occurring when ray 
equations, Ṙ = 	T07/T7, 7̇ = −T07/TR, 
exhibit classical chaos in x,k phase space 
when rays are bounded but not integrable.

s Eigenval. spacings obey Wigner distribution:

Analysis of a W7-X 
interchange 
instability 
spectrum shows q-
chaos signature: 
Wigner distribution

*OPEN QUESTION:
Is MHD continuum 
(stable modes) 
analogous to quantum 
continuum (unbound
states)? Can quantum 
chaotic scattering
theory be used in MHD?



Hasegawa-Mima equation
The Hasegawa-Mima equation provides the simplest model for 
propagation of drift waves in magnetically confined plasmas. It is, as 
originally written, isomorphic to the geostrophic vorticity (Charney–
Obukhov) equation, with Rossby waves the analogues of drift waves.



Modified Hasegawa-Mima equation



Resistive drift waves: 
Hasegawa-Wakatani equations



Inverse cascade of Modified HW 
turbulence produces zonal flows
s Dorland-Hammett modification leads to 

preferential growth of “zonal” modulations 
(which can suppress turbulent transport)
Numata, Ball & Dewar, Phys. Plasmas 14, 102312 (2007)



Conclusion of Part 1

s Have tried to indicate broad scope of 
plasma theory for fusion physics

s Three-dimensional geometries pose 
many mathematical problems

s Self-organization of turbulent plasmas 
can give rise to transport barriers


