Nonlinear plasma physics for fusion

finding our way on the side of the nuclear valley
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Abstract

Negotiating the path to fusion power requires
understanding and controlling a very complex
system: a plasma sustaining an enormous
thermal gradient that drives many emergent
nonlinear phenomena through a variety of self-
organization mechanisms. After a very brief
overview of the magnetic confinement approach
to fusion power, some theoretical approaches to
understanding and modeling these phenomena
will be reviewed.



Plan

¢ Part1: Overview of some key concepts

¢+ Magnetic confinement approach to fusion
¢+ Particle and magnetic field dynamics
¢+ Complex open systems
¢+ Magnetohydrodynamic approach
¢+ Field line coordinates
¢+ Linear instabilities & quantum chaos

¢+ Drift wave turbulence and self-organization of
zonal flows

¢ Part 2: Current and open problems in
multi-region relaxation theory



Plasma physics and fusion power

ePlasma is gas that is hot enough that some or
all of the atoms are ionized i.e. lose their
electrons and become electrically conducting

Much of astrophysics concerns plasma and
there are many industrial applications, but the
“holy grail” is the generation of




The Nuclear Valley
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2 approaches to fusion power —

inertial & magnetic confinement

¢+ Lawson criterion: To get net energy
production with D-T need triple product > 10
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¢+ |Inertial confinement: short time, high pressure

¢ Magnetic confinement: long time, low (1 atm)
pressure
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Magnetic field geometry

¢ Toroidal magnetic confinement requires both

toroidal and poloidal field components —> helically
twisting field lines

¢+ Example shown: axisymmetric system (tokamak)

On average, a — TjToroidal angle ¢

magnetic field line: =

rotates poloidally by -

angle ((s) in each | [\

toroidal pass ' o (7 N
Poloidal ( : 4 / ' \V
angle 6

Flux surfaces:
Poincaré section  labeled e.g. by s or ¢



Tokamak plasmas are often said to be
doughnut shaped " - &
N > ; |

“Well, what do you say to a person who tells you he’s working
on a doughnut-shaped energy field?”



Magnetic field “dynamics”™
¢ Motion on field lines is dynamical system
r = dr/d( « B where ¢is a toroidal angle
¢ System is Hamiltonian (Morrison, March 22)
¢ Analyze with flux-preserving return map to

Poincare section ¢ = 0:

Nonaxisymmetric (3-D) fields
are not generically
integrable, i.e. some points
do not lie exactly on flux
surfaces (e.g. KAM* invariant
tori). Instead follow chaotic
orbits in island separatrices.
*Kolmogorov, Arnol’d & Moser

invariant

torus:
¢ = 1rrational
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island:
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rotation angle
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Particle dynag\ics
¢ Electrons in e.s.” wave H = 5—90 — e cos(kx — wt)

Region I: Fast Rx Like
passing pérticles Region | Region II: Trapped —physical
: particles in phase- pendulum
Resonant Pz W -~ — H/ space island
CRESE ) —" —_ Region Ili: Slow
, . ' “=7" " passing particles
electrostatic . X
¢ lons in a tokamak  “Banana” orbits:
Obey drift equations: —
Adiab. invariant pu = va/ZB 7

Energy invariant muvj/ /2 + uB
Cross-field V B drift
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The need for helical twist

The VB drift is also the reason why we need both
toroidal and poloidal field:

Having both makes field lines helical

As conductivity is high along field lines this makes
surfaces equipotentials and stops plasma drifting to
the wall

Tokamaks use a high toroidal current to generate
the poloidal field, but this can cause dangerous
disruptions

Stellarators use 3-D geometric effects instead, thus
much more robust against disruption



Largest magnetic confinement
fusion experlment — LIE R
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Internatiol 1 lng plasma experiment ITER
under const on in Cadarache, France

Partners: Europe, Japan, China, India, Russia, South Korea, USA




Some other alternative approaches
(some privately funded!)

¢ Spherical ¢+ Reversed field

tokamaks pinches: low toroidal pitysics
(MAST,NSTX) field, self-organized
Compact, helical states (RFX,
high- 3, where Padua)
5= <2M0p>
¢ Fusion-fission hybrids, ¢+ Aneutronic 'p''B rather than DT?
technically attractive, but ——— =

not politically?

=—— </ )/
- Iqu L b_t.\"/.- b/ 2 -
RT-1 levitated W Rigr s
dipole, Yoshida Field-Reversed

Lab, Kashiwanoha Config., Irvine, USA



Open systems:
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Complex systems

¢ Strongly driven systems exhibit
turbulence, but also self-organization

¢ Cross-disciplinary — theory pushes
boundaries of statistical mechanics,
nonlinear dynamics, fluid dynamics,

|

W x,y axes for
lab™ approx.
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Some approaches to complex
systems analysis

Reduce nonequilibrium N-body problem to
continuum models (fluid, Vlasov etc)

Find equilibria & periodic orbits in simple cases and
use nonlinear continuation to follow them to more
complex cases

Linearize about these and determine stable and
unstable normal modes

Locate stability thresholds/bifurcation points

Find reduced-dimensionality models on slow
manifolds

Use simulations to find phenomena missed by above



Fluid models: I|deal
Magnetohydrodynamics (MHD)

Mass and entropy in each fluid element are
conserved by mass p & pressure p advection

equations (0, +v-V)p = —pV-v
(Or +v-V)p=—pV-v

Magnetic flux threading each microscopic loop
advected by the flow is also conserved (“frozen in™)
by magnetic field B advection equation

(0 +v-V)B=—-B-(IV:v - Vv)
Fluid equation of motion

B? BB
p(0y +v-V)v=-V. [(p = —) I —]
210 Ho

NB Divergence of stress tensor includes the jxB force



New book(© 2016)

Roger J. Hosking - Robert L. Dewar

Fundamental Fluid
Mechanics and
Magnetohydrodynamics

EXTRAS ONLINE &)\ Springer




MHD waves & instabilities

¢ Local dispersion relations for large |k|, small
k”/ kl (relative to direction of B):

Alfvén wave: pwi = (k-B)? 1 v (é))as kgk_)]g
Sl 2 M — wk/ ||
ow magneto- . vp (k-B) 0
sonic wave: pws = characteristics propagate
' Uy ' B2 4 yp |information parallel to field

Fast magnheto-
onicwave: puk = (45" B + )b 12 e % ot PSS
¢+ Normal modes of flow-free equilibria are found from A
eigenvalue problem pw?€ = —F-£€, where the
linearized force operator F is Hermitian: eigenvalues (|stable

w? are real, so instability (imaginary w) only if w2 < 0. peontinua
a
¢+ Thus stability threshold is w = 0. (NB & denotes fluid «,ﬁoﬂe
element displacement. Take k - & = 0 to exclude fast 0

.
mode. ) unstable eigenvalue




Helically fluted columns/waves

¢ A flute mode in
toroidally confined
plasma has constant

the hel1cal maghnetic
field lines — nothing
to do with the the

musical instrument!  ©reat Colonnade at
Greco-Roman ruins in

~wiggca Apamea, Syria, showing

N helically fluted columns
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ldeal-MHD short-wavelength flute-
type instabilities

¢+ All 3 branches of local dispersion relation have
w? > 0, so are stable; but Alfvéen and slow
m.s. modes get to instability threshold w* = 0
when B - k = 0, implying B-V¢ = 0 for
unstable MHD modes beyond standard WKB.

¢ Suggests anisotropic WKB ansatz
¢ = EexpliS(r) /e — iwt], B-VS =0, £slowly varying

where € is inserted for formal asymptotic analysis. When ray
dynamics is integrable, global spectrum found from EBK (e.g.
semiclassical, Bohr-Sommerfeld) quantization (see later).

L0 Implement, need special curvitinear cooras:.
Ref: R.L. Dewar & A.H. Glasser, Phys. Fluids 26, 3038 (1983)




Straight-Field-line coordinates

¢+ On each toroidal magnetic surface use generalized
(+ ¢) toroidal angle ¢ and/or generalized poloidal

angle 8 such that field lines are straight:

On 6, { covering space on a magnetic
surface* s = const, field lines are
straight lines a = { — q(s)@ = const.

{ |q51/6

NB For irrational g in a 3-D
system, equilibrium
quantities change quasi-
periodically along field line

field line:
{=a+qb

*Open Question:
What is “best”
approximation to

N | @ a broken surface
Curvilinear coordinates s, 6, ¢ oy .. % in a 3-D system




Ballooning/interchange ##

e
instabilities - =
)

¢ Short-perpendicular-wavelength instabilities “%%
can be found using the anisotropic WKB
ansatz ¢ = Jexp(iS/e — iwt), where & = 5%
giving the ballooning equation:

k? 2k-VpxB kxXB-k pk?
( B-V@) 30 i Y + 72 T —

K =b-Vbis the field- | This is an ordinary differential equation to
line curvature vector, | ha integrated along each infinite field line
and b is the parallel ik

a = const. Requiring that ¢ decay

unit vector b = B/B. : ' '

exponentially at +oo gives an eigenvalue
problem determining the local dispersion relation w = w,(«a,8,.),
where 6, = kq/k,. Decay can be due to magnetic shear, or, in
3-D geometry, Anderson localization due to quasiperiodicity.



Classical Quantum Chaos!

¢ Quantum chaos refers to random-looking
eigenvalue spectrum occurring when ray
equations, x = dw, /0K, k = —0w, /90X,
exhibit classical chaos in x,k phase space
when rays are bounded but not integrable.

¢+ Eigenval. spacings obey Wigner distribution:

Analysis of a W7-X
interchange
instability
spectrum shows q-
chaos signature:
Wigner distribution

acing distribution P(x)

o

Analysis of the ideal MHD force operator spectrum
3d equilibrium; 2 different UNFOLDING methods
I T T
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*OPEN QUESTION:

Is MHD continuum
(stable modes)
analogous to quantum
continuum (unbound
states)? Can quantum
chaotic scattering
theory be used in MHD?



Hasegawa-Mima equation

he Hasegawa-Mima equation provides the 31mplest model f
propagation of drift waves in magnetically conﬁned
- originally written, isomorphic to the geostrophic vor
Obukhov) equation, with Rossby waves the analogu

@, +vy V+v.- V-3, +v,- V)pZVZzp 0
Vy; =2xV1y :ExB drift

Ve =-— T 2xVn, : Diamagnetic drift due to

eBn, background inhomogeneity

p,=w;(T,/m ) : “Effective” Ion Larmor radius

w,; =eB,/m, : Cyclotron frequency



Modified Hasegawa-Mima equation

(@, +ve V+ve- V)=, +v;-V)p2Vy =0

P =y -  zonal (y-averaged) part is subtracted from the
potential/stream function to give fluctuation

1 L
y=—[pd
Ly{ y

The modification is particularly important in studying drift wave-zonal
flow interplay.

[W. Dorland et al., Bull. Am. Phys. Soc. 35, 2005 (1990),
W. Dorland and G. Hammett, Phys. Fluids B 5, 812 (1993)]




Resistive drift waves:
Hasegawa-Wakatani e JU@‘UO

{a,b} = (0a/0x)(0b/dy) — (30/33/)(317/3:6)

\ ¢ =V = 0%/0z* + 6*/0y?
0 ¥ 4« Hyperviscosity/diffusion
¢+ {2, ¢} =alp —n) - DV'(, © Spes igh
0 dp ‘
~N+{p,n —n)—k— — DV'n,
Ot {‘P } /51 (‘P ) / dy Drift-wave
adiabaticity op;rator o 2562 e k = (8/0z) Inng. d_n:ll:iit;rm
T/ (mmowee®)0%/ 0z gradient

e arises from Ohm’s law:
18 T. * retrieve Hasegawa—Mima eqn. in
Jz = —€NVe, = —7—15 (cp . In n) limit q—>o0
e get normal fluid eqn. in limit a—0

* becomes parameter by assuming typical k,



Inverse cascade of Modified HW
turbulence produces zonal flows

¢ Dorland-Hammett modification leads to
preferential growth of “zonal” modulations

(which can suppress turbulent transport)
Numata, Ball & Dewar, Phys. Plasmas 14, 102312 (2007)

Modification enhances generation of zonal flows
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Conclusion of Part 1

¢ Have tried to indicate broad scope of
plasma theory for fusion physics

¢ Three-dimensional geometries pose
many mathematical problems

¢+ Self-organization of turbulent plasmas
can give rise to transport barriers



