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Abstract

Self-organization of structures is one of the most challenging prob-
lems of modern physics. Staring from standard classical mechanics, we
develop an advanced framework of mechanics that has “non-canonical”
foliated phase space. Vortical structures in the Universe are explained
as creations on leaves of macroscopic scale hierarchy. This course pro-
vides students with advanced level of theoretical understanding and
mathematical methods applicable in a wide area of nonlinear sciences.
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1 Scale-hierarchy and Self-organization

Self-organization of a structure is, at its surface, an antithesis of the entropy
ansatz. However, disorder can still develop at microscopic scale while a
structure emerges on some macroscopic scale; it seems more common in
various nonlinear systems that order and disorder are simultaneous, and
such co-existence may be possible if the self-organization and the entropy
principle work on different scales. Therefore we have to write a theory of
self-organization as a discourse on scale hierarchy.

Indeed scale hierarchy is a popular keyword in various arguments on
“structures”; a biological body is a typical example in which an evident
hierarchical structure is programmed to establish, enabling effective con-
sumption of energy and materials as well as emission of entropy and wasts.
But the theory of a physical macro-system —a collective system of “simple”
elements, like a gravitational system or a plasma— hinges on a different
framework; a scale hierarchy is not “programed” to emerge, or structures
are not subject to some functions; yet one can observe a more fundamental
and elementary process of creation in nonlinear dynamics.

For example, magnetospheres are self-organized structures found com-
monly in the Universe. In the vicinity of a dipole magnetic field rooted in the
central object, a plasma clump with rather steep density gradient is created
(Fig. 1). So-called inward diffusion (or up-hill diffusion) drives charged par-
ticles toward the inner higher-density region, which is seemingly opposite to
the natural direction of diffusion (normally, diffusion is a process of flatten-
ing distributions of physical quantities). ! Creation of such a macroscopic
structure can be explained only by delineating a fundamental difference of
macroscopic hierarchy and the conventional microscopic (or scale irrelevant)
narrative of physics.

To set a stage for the discussion of scale hierarchy, let us review the usual
Boltzmann distribution and show how the self-organization of a magneto-
spheric plasma clump is “strange” in the view of microscopic framework.
The energy of a charged particle is a sum of the kinetic energy and the
potential energy:

H = 20 + g9, M

!The process is driven by some spontaneous fluctuations (symmetry breaking) that vi-
olates the constancy the the angular momentum; in a strong enough, symmetric magnetic
field, the canonical angular momentum Py is dominated by the charge ¢ multiple of the
flux function ¢ (Gauss’ potential of the magnetic field), thus the conservation of Py = qv)
constrains the charged particle on a magnetic surface (level-set of 1)). Perturbed by a
random-phase fluctuations, particles can diffuse across magnetic surfaces.



where v := (P —qA)/m is the velocity, P is the canonical momentum, (¢, A)
is the electromagnetic 4-potential, m is the mass, and ¢ is the charge. The
standard Boltzmann distribution function is derived when we assume that
the Lebesgue measure d3vd>z is an invariant measure and the Hamiltonian
H is the determinant of the ensemble; maximizing the entropy

S =— / flog fd*vdx (2)

under the constraints on the total energy £ = [ H fd3vd®x and the total
particle number N = [ fd3vd3z, we obtain

f(il), ’U) = Z_le_ﬂHv (3)

where Z is the normalization factor (log Z — 1 is the Lagrange multiplier on
N) and S is the inverse temperature (the Lagrange multiplier on E). The
corresponding configuration-space density is

W
N—

@) = [ fdtvex e, (

which becomes homogeneous if the charge neutrality condition applies (¢ =
0).

The puzzle of creation of magnetospheric plasma clump is not solved
by inquiring into the Hamiltonian; since magnetic field does not cause any
change in the energy of particles, there is no way to revise the energy in
the calculation of the equilibrium state. Instead, it is solved by finding
an appropriate “phase space” (or an ensemble) on which the Boltzmann
distribution is achieved; the identification of an appropriate macroscopic
phase-space is nothing but the formulation of what we call “scale hierarchy”.

We describe the scale hierarchy by a phase-space foliation, and explain
the self-organization (creation of heterogeneity) by a distortion of the metric
(invariant measure) on leaves. In the foregoing example of magnetospheric
plasma confinement, the phase-space of magnetized particles is constrained
(foliated) by adiabatic invariants, and the metric on each leaf is distorted
with respect to the laboratory-fame flat space; the particles distribute ho-
mogeneously on the leaf can have peaked profile when the inhomogeneous
Jacobian weight multiplies.

The aim of this lecture is to show how a macroscopic scale hierarchy is
foliated, and how interesting “structures” are created on the leaves. Folia-
tion of phase space is due to “noncanonicality” of the geometry that governs
the dynamics. Aforementioned example of “self-organized confinement” will



Figure 1: Jovian magnetosphere (theoretical model by J. Shiraishi, S.
Ohsaki, and Z. Yoshida, Phys. Plasmas 12 (2005), 092901).

be discussed as an example finite-dimensional systems. We will also study
infinite-dimensional systems by referring examples of fluid and plasma dy-
namics.



2 The Framework of Hamiltonian Mechanics

In this section, we review the general framework of Hamiltonian mechanics,
and see how symplectic geometry dictates the dynamics. Some mathemati-
cal backgrounds are given in Appendix A.

2.1 Classical mechanics (Hamiltonian formalism)

We start by reviewing the standard symplectic geometry and Hamiltonian
mechanics. We denote by z = (¢*,--- ,¢™,p',--+ ,p™) the state vector, a
“point” in an affine space X = R?™ (to be called phase space). A canonical
Hamiltonian system is endowed with a Hamiltonian H(z) (a real function
on the phase space X) and an 2m x 2m antisymmetric regular matrix

L Om I
Jo = (_Im 00) |
where I,,, and 0,, are the m-dimensional identity and nullity. > We call .J, a

canonical Poisson operator (matrix). The equation of motion (Hamilton’s
equation) is written as

d
pri Je.0.H(z). (5)

We call a scalar function on the phase space X (i.e. a functional f :
X — R) an observable. The totality of observables is denoted by Fun(X). 3
Defining a Poisson bracket by

{a,b} := (0za, J.0:a) = (0,ia)J;;(0,b),

we may evaluate the rate of change of an observable f(z) by

d

The Poisson bracket is a bilinear derivative! map to a scalar function
({, }: Fun(X) x Fun(X) — Fun(X)), ® defining a Lie algebra on Fun(X).

?In what follows, we may write just I or 0 without specifying the dimension (especially
when we consider an infinite-dimensional space).

3Fun(X) is a commutative ring endowed with the conventional vector calculus and the
associative products of scalar functions.

*A Lie bracket satisfying the derivative relation {a,bc} = {a,b}c + {a,c}b is called a
Poisson bracket.

®Notice that, when we write the Poisson bracket as {a,b} = (8a, J.0:b), the left-hand
side is a new scalar function € Fun(X) (not a real number evaluated by the right-hand-side
functional at a single point z, but a function defined over X).




The Hamiltonian flow is a wvector in the phase space: Regarding 0,: as
the basis of the tangent space,

ad(H) := —{H, } = J9(9,; H)0,:.

Note 1 (Differential operators) We can also regard ¢ := ad(a) as a dif-
ferential operator (Fun(X) — Fun(X)). Let us denote by D(X) the linear
space of such differential operators. We can define a Lie-ring structure on
D(X) by the commutation of non-commutative products ab and ba:

[a,b] :== ab — ba = ad(a)ad(b) — ad(b)ad(a).

By Jacobi’s identity

{{av b}v C} + {{b’ C}’a} + {{C’a}v b} =0, (6)

we find

l0,8] = ad({a,b}).
The ad(H) is the adjoint representation of the Lie algebra defined by the
Poisson bracket (so called Poisson algebra). The Lie bracket [a,b] defines a
Lie ring A (D(X) is the enveloping algebra of A, i.e. U(A) = D(X)).
2.2 Classical mechanics on T*M

We generalize the space R?™ to a general cotangent bundle 7* M of a smooth
manifold M of dimension m. The canonical Poisson operator J. is related to
the symplectic 2-form that determines the geometric structure of canonical
Hamiltonian system derived by an action principle. A symplectic 2-form
can be represented by local coordinates as

w=dg' Ndp' +dg® Ndp? + -+ + dg™ A dp”, (7)
which is the “vorticity” (or a “field tensor”) of a canonical 1-form
0 =p'dg' +p°dg* + - +pdg", 8)

i.e. w =df. Denoting

we may write
1
w= EJgedzk Adzt, (9)

8



where J¢ = J. 1 = —J,..

Hamilton’s equation of motion is produced by an action principle. Given
a Hamiltonian H(z,t), the action is an integral along a curve z(t) connecting
a fixed start point a = (z¢,t¢) and end point b = (z1,%1):

bl gl
S = (pfdi - H) dt. (10)
W Ut

The variation of S with respect to z(t) — z(t) + ez(¢) is

b . dzt  OH)\ _
(52(”5 = E/ (kaﬁ - ﬁ) det + 0(62),

The Euler-Lagrange equation is

dzt  OH
gy =gk (k=12 (11)
By multiplying J, ! = —J., we obtain
dz* OH
— =g (k=1,---,2 12
=TS (k=1 20), (12

which is the canonical form of (5).
The geometry determined by the 2-form w is, thus, invariant on the

group
Sp(m) = {A € GL(2m,R); A~' J.A = J.},

i.e. the symplectic geometry is endowed with a “G-structure” determined
by the symplectic group Sp(m).

2.3 Generalized action principle

While we find that a symplectic geometry is naturally implemented on T* M
by canonical Hamiltonian mechanics (i.e. by a symplectic 2-form), there
is an asymmetry between ¢/ (position on M) and p/ (coordinate of the
cotangent space). To formulate a homogenized general action principle, we
consider a general n-dimensional smooth manifold X (n may not be an even
number), and consider a general non-degenerate closed 2-form such as

n
w=d)=d|> 0;(z)ds’
7j=1



Defining the “anti-symmetric field tensor”

00, 00y
A= ——— (1 <k 1< 13
kL 9k Y ( > Myt > n)a ( )
we may write
1
w= §Akgdzk Adz’, (14)
generalizing (9); when n = 2m, and 0; = p’ and 0,1, =0 (j = 1,--- ,m),
we obtain A = J¢ = —J,.
The action is ,
bt dz?
S = (Oj(z)— — H) dt. (15)
to dt

By the variation

b dz* OH K 9
(52@)5 = E/a <AME — w) Z8dt 4+ O(e”),

we obtain the Euler-Lagrange equation

d2*  OH

Apyp— =" (k=1.--- 16

kL dt 2k ( ) an) ( )
By multiplying A~! =: J, we obtain
dz* OH

— =g = (k=1,---,n). 17

= S MET (k=1 ) (1)

When, n = 2m, §; =p’ and 0,1, =0 (j =1,--- ,m), J = A~ = J,., thus
(17) becomes a canonical equation (12).

One may generalize the action principle further by allowing the 2-form
w to be degenerate, i.e. the rank of the field tensor A may be less than
the space dimension n, and, moreover, it may change as a function of z
(the point where Rank(A) changes is a singularity; see Remark 1). Such
system may not be transformed into an “explicit” differential equation such
as (17). On the contrary, one may consider a general Hamilton’s equation
of the form of (17) with some antisymmetric J(z) that may a smaller and
non-constant rank. Such a Hamiltonian system may not be produced by
an action principle. We call the latter a non-canonical Hamiltonian system,
which will be the main subject of the preset lecture.

10



3 Non-canonical Hamiltonian mechanics

In this section, we consider a generalized Hamiltonian mechanics that are
characterized by noncanonical Poisson operators. Here we consider only
finite-dimensional systems, but the framework will be further generalized to
infinite-dimensional systems in the next section.

3.1 Noncanonical Poisson operator and Casimir elements

Let X be a phase space of dimension n (an arbitrary finite number; we
will generalize the theory for infinite-dimensional Hamiltonian system). Let
J(z) € End(X) be an antisymmetric linear map (in general, varies as a
regular function of z on X). ¢ We consider a general Hamilton’s equation
of motion:

d
prei J(2)0.H(z). (18)

We say that the Poisson operator J(z) is non-canonical, if Ker(J(z))
has non-zero element. A function C'(z) (# constant) that satisfies

J(2)8,0(2) =0 (19)

is called a Casimir element. By the definition, 0,C(z) € Ker(J(z)). How-
ever, a general v € Ker(.J(z)) may not be “integrable” to produce a Casimir
element C(z) such that v = 9,C(z). Integration (or foliation) is only pos-
sible under a limited condition:

Theorem 1 (Lie-Darboux) Suppose that Rank(J) = 2v < n (the dimen-

sion of phase space), and v is a constant independent to z. Then, (19) has

p = n—2v) independent solutions (Casimir elements) C1(z),Ca2(2), -+ ,Cu(2).

Choosing these Casimir elements as new coordinates, and also choosing other

2v coordinates appropriately, we can transform variables as ¢ = (¢, -+, Cowy Covits -+ s Covgp)s
by which J can be transformed into a standard form

0, I,
Js = _Iu 01/ : . (20)

Casimir elements are constants of motion. In fact,

d
-C=—{H.C}=0. (21)

®Normally, we assume that the Poisson bracket defined by {a, b} := (9., J9.b) satisfies
Jacobi’s identity (6). In a more general discussion, we may not require Jacobi’s identity.

11



Notice that (21) holds for any arbitrary Hamiltonian H; the invariance of
Casimir elements is due to the “topological defect” (kernel) of the Poisson
operator J, but is not due a symmetry of the Hamiltonian (remember that
a usual constant of motion is produced by a symmetry of a Hamiltonian).

By the fact that a Casimir element C(z) (if it exists) is a constant of
motion, every orbit is constrained on a level set of C'(z) that includes the
initial point of the orbit. Such a manifold is called a leaf. We say that the
phase space is foliated by Casimir leaves.

Example 1 (Nambu dynamics) Let us consider a three-dimensional state
vector P, and a Poisson operator

0 Q3 —Q
J=| -9 0 o . (22)
Q Q1 0
In terms of a three vector Q@ = '(Q,Q2,Q3), we may write J = —Qx.

Evidently, C = (Q, P) is a Casimir element. The corresponding Poisson
bracket may be written as

{4, B} = (9pA, (9pB) x (0pC)). (23)

Notice that the right-hand side expression has an interesting symmetry;
denoting it by a triple-term bracket {A,B,C}, we observe {A,B,C} =
{B,C,A} = {C,A,B}. Given a Hamiltonian B, the dynamics of an ob-
servable A is described by dA/dt = {A, B,C}, where C is a term determin-
ing the “geometry”. The role of B (Hamiltonian) and C (Casimir element)
may be switched by considering C' is the Hamiltonian and — B is the Casimir
element. Nambu [6] proposed an interpretation that C is the second Hamil-
tonian.

Remark 1 (Casimir foliation) In general, Casimir leaves are not neces-
sarily symplectic leaves, i.e., separating Casimir elements may not suffice to
“canonicalize” J(z). As Theorem 1 applies under rather limited conditions,
a general topological defect Ker(J) may not determine a “global” foliation of
the phase space. The point where Rank(J(2z)) changes is singularity of the
partial differential equation (19), which generates singular (hyper-function)
Casimir elements [13].

3.2 Energy-Casimir function

When we have a Casimir element C'(z) in a noncanonical Hamiltonian sys-
tem, a transformation of the Hamiltonian H(z) such as (with an arbitrary

12



Figure 2: Low-dimensional cartoon of Casimir foliation of phase space. In
a noncanonical Hamiltonian system, the dynamics is constrained on a level
set (leaf) of Casimir invariant (the leaf on which the orbit is constrained
in determined by the initial condition). In general, Casimir leaves have
different curvatures than those of the energy shells (level sets of the energy
norm), hence the effective energy dominating the dynamics constrained on
Casimir leaves have rather complicated distributions, creating interesting
dynamics, equilibria, or thermal equilibria.

real constant p)
H(Z) = Hy(z) = H(z) — uC(2) (24)

does not change the dynamics. In fact, Hamilton’s equation (18) is invariant
under this transformation:

%z — JO.H,(2) = JO.H(2). (25)
We call the transformed Hamiltonian H,(z) a energy-Casimir function.
Interpreting the parameter p as a Lagrange multiplier of variational prin-
ciple, H,(z) is the effective Hamiltonian with the constraint to restrict the
Casimir element C'(z) to be a given value (since C(z) is a constant of mo-
tion, its value is fixed by its initial value). As we will see in some exam-
ples, Hamiltonians are rather simple —they are often “norms” of the phase
space.” However, an energy-Casimir functional may have a nontrivial struc-
ture. Geometrically, H,(z) is the distribution of H(z) on a Casimir leaf

"In a “strongly coupled system”, however, the Hamiltonian may be a nontrivial function
(see Fig.2). For example, remember the Ginzburg-Landau potential in a condensed spin
system.

13



(hyper-surface of C(z) = constant). If Casimir leaves are distorted with
respect to the energy norm, the effective Hamiltonian may have complex
distribution on the leaf.

3.3 Canonicalization

Suppose that a non-canonical Poisson operator J,. is given in a standard

form 8 .
o e
he= (-F-7). (26)

where J; is a 2v x 2v symplectic matrix; see (20). There are two different
methods to canonicalize (26).

3.3.1 Reduction method

When a noncanonical Poisson operator is casted in the standard form (26),
Ci(z) = z2*1... | C, = z?”*# are apparent Casimir elements, and the
Casimir leafs (X, := X /Ker(J,.)) are symplectic leaves. Hence, decompos-
ing the null space Ker(J,,.) from X, and restricting the dynamics on X, we
obtain a canonicalized Poisson operator J..

3.3.2 Extension method
Adding p new variables 91, -- ,9,, we consider an extended state vector
Zo= (2t 2" 0,0 ,0,) € X = X x RE.

We define a 2(v + ) x 2(v + p) matrix such as

J = L0, I, ). (27)
|

After reordering the variables, J becomes a 2(v + ) x 2(v + p) symplectic
matrix.

In this canonicalized system, the original Casimir elements C; = Z2vti
(j =1,---, ) are still constants of motion, but they are no longer Casimir

8Note that an arbitrary noncanonical Poisson operator my not be transformed into this
standard form; see Remark 1.
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elements of the extended system —canonical system does not have any non-
trivial Casimir elements. The constancy of Cj(z) is, now, due to the sym-
metry of the Hamiltonian; the newly introduced variables ¥; is, of course,
absent in the Hamiltonian H(z) of the original system. Hence,

d g
%ZV ]:—819].1;[:0.

15



4 Foliation by adiabatic invariants

Phase space foliation provided by adiabatic invariants is shown to impart
simultaneous long-scale order and short-scale disorder to a Hamiltonian sys-
tem. A plasma confined in a magnetosphere is invoked for unveiling the
organizing principle —in the vicinity of a magnetic dipole, the plasma self-
organizes to a state with a steep density gradient. The resulting nontrivial
structure has maximum entropy in an appropriate, constrained phase space.
One could view such a phase space as a macroscopic leaf (separating micro-
scopic action-angle variables) of the scale hierarchy that is foliated in terms
of Casimir invariants.

4.1 Microscopic description of charged particle dynamics

The Hamiltonian of a charged particle is a sum of the kinetic energy and
the potential energy:
H = 20 + g9, (28)

where v := (P —gA)/m is the velocity, P is the canonical momentum, (¢, A)
is the electromagnetic 4-potential, m (q) is the particle mass (charge). In the
present work, we may treat electrons and ions equally (in later discussion,
we will neglect ¢ assuming charge neutrality, but generalization to a non-
neutral plasma will be interesting [17]). Denoting by v and v the parallel
and perpendicular (with respect to the local magnetic field) components of
the velocity, we may write

H= %vi + %uﬁ + qo. (29)
The velocities are related to the mechanical momentum as p := mv, p| :=
mvH, and Pl = mvu].

4.2 Creation of an action-angle pair by magnetization

In a strong magnetic field, v, can be decomposed into a small-scale cyclotron
motion v. and a macroscopic guiding-center drift motion v4. The periodic
cyclotron motion v, can be “quantized” to write

m

5”3 = pwe(z)

in terms of the magnetic moment p and the cyclotron frequency w.(x); the
adiabatic invariant ;4 and the gyration phase 9. := w.t constitute an action-
angle pair. In the standard interpretation, in analogy with the Landau

16



levels in quantum theory, w. is the energy level and p is the number of
quasi-particles (quantized periodic motions) at the corresponding energy
level.

The macroscopic part of the perpendicular kinetic energy is expressed
as m

T = (P - )/ (2mr?),

where Py is the angular momentum in the 6 direction and r is the radius
from the geometric axis. In terms of the canonical-variable set

z = (7901/1'3 Cap”a 93 Pg),

the Hamiltonian of the guiding center (or, the quasi-particle) becomes

Y
ﬁ (PG‘ T2q¢) + q¢. (30)

1
He = pwe + 5—pif +
m
Note that the energy of the cyclotron motion has been quantized in term
of the frequency w.(x) and the action u; the gyro-phase 1, has been coarse
grained (integrated to yield 27).

4.3 Boltzmann distribution

The standard Boltzmann distribution function is derived when we assume
that d®vd3z is an invariant measure and the Hamiltonian H is the deter-
minant of the ensemble. Maximizing the entropy S = — [ flog fd3vd®z
keeping the total energy E = fod?’vd?’x and the total particle number
N = [ fd*vd3x constant, we obtain

f(il),’l)) = ZileiﬁHa (31)

where Z is the normalization factor (log Z — 1 is the Lagrange multiplier on
N) and $ is the inverse temperature (the Lagrange multiplier on E). The
corresponding configuration-space density,

plx) = /fd3v o e PI?, (32)

becomes constant for a charge neutral system (¢ = 0).

Needless to say that the Boltzmann distribution or the corresponding
configuration-space density, with an appropriate Jacobian multiplication, is
independent of the choice of phase-space coordinates. Moreover, the density
is invariant no matter whether we quantize the cyclotron morion or not. Let

17



us confirm this fact by a direct calculation. For the Boltzmann distribution
of the “guiding-center plasma”

fluva o) = Z te P
_ 1B (mee(@)tme} 2tmat /24 q0(@)) (33)
the density is given by
2
pla) = / Fd3v = / f%wcdudvddv” x e=B1?, (34)

exactly reproducing (4).

4.4 Equilibrium on macroscopic hierarchy

Now we formulate the “macroscopic hierarchy” on which the thermal equilib-
rium creates a structure. The adiabatic invariance of the magnetic moment
w (the number of the quantized quasi-particles) imposes a topological con-
straint on the motion of particles; it is this constraint that is the root-cause
of a macroscopic hierarchy and of structure formation. Mathematically, the
scale hierarchy is equivalent to a foliation of the phase space. To explain
how the scale hierarchy is formulated, we start by the general (micro-macro
total) formulation, and then separate the microscopic action-angle pair u-v.;
the macroscopic phase space is the remaining sub-manifold immersed in the
general phase space, which we delineate as a leaf of the foliation in terms of a
Casimir invariant —if there is a nontrivial function C satisfying {G,C} =0
for every G, we say that the Poisson bracket { , } is non-canonical, and call
C a Casimir invariant; see Sec. 3.

The Poisson bracket on the total phase space, spanned by the canonical
variables z = (J¢, 1, ¢, p||, 0, Pp), is

{F,G} :=(0.F,J0.G),

where (u,v) := [u;jv/d°% is the inner-product and J is the canonical sym-
plectic matrix:

J. 0 0 01
J=|0 J 0 |, Jc::<_1 0). (35)
0 0 J,

The equation of motion for the Hamiltonian H, is written as dz//dt =
{z7,H.}. Notice that the quantization of the cyclotron motion suppresses

18



change in . Liouville’s theorem determines the invariant measure d°z, by
which we obtain the Boltzmann distribution (33).

To extract the macroscopic hierarchy, we “separate” the microscopic
variables (., 1) by modifying the symplectic matrix as

0
J
0

0
Jnei=| 0 (36)
0

o
QKAOO

The Poisson bracket
{Fa G}nc = (azFa jncazG)

determines the kinematics on the macroscopic hierarchy; the corresponding
kinetic equation Oyf + {He, f}ne = 0 reproduces the familiar drift-kinetic
equation.

The nullity of J,,. makes the Poisson bracket {, },. non-canonical [5].
Evidently, p is a Casimir invariant (more generally C' = g(u) with g being
any smooth function). The level-set of u, a leaf of the Casimir foliation,
identifies what we may call the macroscopic hierarchy. By applying Liou-
ville’s theorem to the Poisson bracket {, },., the invariant measure on the
macroscopic hierarchy is d*z = d%z/(2ndu), the the total phase-space mea-
sure modulo the microscopic measure. The most probable state (statistical
equilibrium) on the macroscopic ensemble must maximize the entropy with
respect to this invariant measure. The variational principle is set up follow-
ing the standard procedure —immersing the macroscopic hierarchy into the
general phase space, and incorporating the constraints through the Lagrange
multipliers: We maximize entropy S = — [ flog f d®z for a given particle
number N = [ fd°z, a quasi-particle number M = [ ufd®z, and an energy
E = [ H.fd°2, to obtain the distribution function

f = foi=2 te BHetan) (37)

where «, 3, and log Z —1 are, respectively the Lagrange multipliers on M, F,
and N. In this “grand-canonical” distribution function, o/ is the chemical
potential associated with the quasi-particles.

We can also derive (37) by an energy-Casimir function. With a Casimir
element 1, we can transform the Hamiltonian as H, — H, := H. + ap («
is an arbitrary constant) without changing the macroscopic dynamics; H,,
is called an energy-Casimir function [5]. The Boltzmann distribution with
respect to H, is equivalent to (37).
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Figure 3: Density distribution (contours) and the magnetic field lines (level-
sets of 1; orange lines) in the neighborhood of a point dipole.

The factor e=** in f, yields a direct w. dependence of the configuration-
space density:

we(x)

Bwe(x) + o’ (38)

p= /fa @d,udvddvu x
m
which may be compared with the density (34) evaluated for the Boltzmann
distribution (¢ = 0 assuming charge neutrality). Notice that the Jacobian
(2w, /m)dp multiplying the macroscopic measure d*z reflects the distortion
of the macroscopic phase space (Casimir leaf) caused by the magnetic field.
Figure 3 shows the density distribution and the magnetic field lines.

We now see that the self-organized confinement of plasma by a dipole
magnetic field is due to the phase-space foliation by the adiabatic invariant
= Casimir element of the noncanonicalized Poisson operator; the effective
phase space on which the thermal equilibrium is achieved is a Casimir leaf,
which is the “macroscopic scale hierarchy” coarse-graining the microscopic
angle variable.
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5 Infinite-dimensional Hamiltonian mechanics

From this section, we consider systems where “states” are represented by
functions of space-time. Quantum mechanics will be discussed as an ex-
ample of canonical Hamiltonian system on a function space. Fluid/plasma
mechanics are noncanonical systems. Their Poisson operators are “inho-
mogeneous” on the phase space (function space) —their inhomogeneities
determine the “nonlinearities” of fluid /plasma systems.

5.1 Function space

A state that is represented by some function u(x) (possibly having multiple
components such as vector or spinor functions) are recognized as a “point”
on a function space; x is a point of a domain €2 that is an open set of R";
u(x) is a point of a function space that we denote X'. Endowing a functions
space X’ with the notion of inner product (we will denote an inner product
by (u,v)), we may consider a “basis” to span the function, which turns out
to be a system of (countably) infinite number of functions, ? thus we may
regard A" as an infinite-dimensional vector space, i.e. we may write
o0
w=" (u,p5)p; (YueX),

Jj=1

with an orthonormal basis {¢1, g2, -+ }. A complete normed space with its

norm ||u|| given by an inner product as |u| = \/(u,u) is called a Hilbert
10

space.

9Usually, we assume that the first axiom of separability holds for the space of functions,
and then, the potency of the space must be at most “countably” infinite. This might be
somewhat surprising. Since an interval {2 on a real axis R, for example, is a continuously
infinite set, a function f(x) on Q might be thought to have a continuously infinite degree
of freedom. However, this is not true. For example, let us consider a space of continuous
functions; C°(Q2). Then, a function f(z) € C°(Q) is already determined uniquely when
its values f(qx) are specified at every ¢x € 2N Q (Q is the totality of rational numbers,
which is a countable set), because there is a sequence q; — x for every x € Q by which
f(x) =lim; f(g;) is uniquely determined by the continuity of C°(£).

10A complete normed space B is called a Banach space (by complete, we mean that
every Cauchy sequence converges to a point in the space). We call a map B — K (field of
scalar, which is either R or C) a functional. The linear space of bounded linear functionals
on a Banach space B is called the dual space of B, which we denote by B*. For a Hilbert
space X, Riesz’ theorem says that X* = X, i.e. every bounded linear functional F(u) of
u € X can be written as F(u) = (f,u) with some f € X.
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Example 2 (Lebesgue space L%({)) and Fourier expansion) Let Q be
a connected open set of R". We consider multi-component complex functions
such as u(x) = (u1(x), - ,umn(x)), and define an inner product by

(u,v) = /Q ; uj(z)v(z) d"z, (39)

where d"x is the n-dimensional Lebesgue measure. By the property of Lebesgue
integrals, the space L?(2) of Lebesgue-measurable functions endowed with the
norm ||u|| = \/{(u,u) is a Hilbert space.

For example, suppose that Q = (0,1) C R. With an orthonormal basis
{p1, 02, } with @, = \/2sin(knz), we may Fourier-expand every u €
L2(0,1):

u="> (u,0;)p (40)
j=1

where the precise meaning of the convergence of the infinite sum is that

v

ulggo u — Zl(u, viyeill = 0.
‘]:

When a state u is dynamical, its orbit is represented by a function of
space-time u(x,t). Regarding that u is a point on a function space A" and
that A’ is an infinite-dimensional vector space, we often write an orbit as
u(t) (just as we denote by z(t) an orbit of a state vector z € R™). The
temporal derivative of u(t) may be defined by the limit with respect to the
norm of X" as u(t) € X' such that

u(t +€) —u(t)

lim
e—0

()| =

If we represent u(t) by its components as u(t) = >, u;(t)g; (cf. the Fourier
expansion (40) in Example 2), we may write @ = >_;[du;(t)/dt]p;. Hence, @
might be denoted by du(t)/dt as we write dz(t)/dt for a finite-dimensional
state vector z(t). However, to avoid confusion with “convective (or total)
derivatives”, we will denote a temporal derivative as a partial differential
Owu (needless to say, for regular functions u(z,t), u(t)|z = Owu(x,t) for
every « € ) and t).
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5.2 Infinite-dimensional Hamiltonian system

We are going to generalize Hamiltonian formalism (18) to an infinite-dimensional
systems; a general Hamilton’s equation of motion will be written as

O = JO,H (u), (41)

where wu(t) is an orbit in a Hilbert space X', H(u) is a Hamiltonian that is a
smooth functional on X', 9,, is the gradient in X', and J is an antisymmetric
linear map X — X.

We have yet to define what the gradient is in a Hilbert space. Remember
that the gradient 0, f of a smooth function f(z) on a Euclidean space R™ is
a vector such that (invoking a small real number ¢)

6f(2) = f(z 4 €d) — f(x) = €(Dof,0) + O(¢?) (V§ € R™).

Generalizing to a Hilbert space X' (generally on a field of scalar C), we may
define the 9, F(u) of a smooth real functional F(u), '* we define

OF(u) = F(u+ €d) — F(u) = eR(0,F(u),d) + O(e®) (V6 € X),  (42)
where (a,b) is the inner product of X. '2

Example 3 Let f(§) be a smooth function on R, and consider a functional
F(u) = [o f(u)d"z for u € L*(Q). If Q € R" is a bounded domain, F(u) is
a smooth functional on L?(2). We easily verify

OuF (u) = f'(u), (43)
where f'(§) = df (§)/d¢.

5.3 Schrodinger’s equation

As an example of canonical Hamiltonian system on a function space, let us
consider a Schrodinger equation:

1
Dhtp = ———H, (44)
V—1h
"We often encounter functionals that are not smooth (for example, including differential
operators). Then, we have to limit variations J to some appropriate subset of X', and
weaken (generalize) the meaning of derivatives; cf. [13].
121f we consider a general Banach space B, (9, F(u),o) may be regarded as a linear
functional on B, and 9, F(u) € B*. For some Banach spaces (such as LP(Q) with 1 <
p < o0), the dual spaces are specified ((L?(Q))* = L9(Q), if p~' 4+ ¢~ = 1), thus the
generalization of the notion of gradients to such Banach spaces is straightforward.
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where ¢ € L?(R?) is a “wave function” (here we consider a scalar function),
and H is a quantized Hamiltonian which is obtained by replacing the mo-
mentum P of classical mechanics by a differential operator —hy/—1V; for a
particle moving in a scalar potential ¢(x),

h2
H =

T 2m

V2 + ¢(x). (45)
We define a real functional by

H(y) = (¢, Hy), (46)

which evaluates the expectation value of the energy=Hamiltonian #. '3
By the Hermitian property of mathcal H, we find

Oy H (1) = 2H. (47)

[Q] For functions ¢ and ¢ such that ¢, @42, = 0, show that (1, He) =
(Y, Hop), i.e. H is a Hermitian operator. By this fact, show that H (1)) is a
real functional. Also, derive (47).

To cast Schrodinger’s equation into a Hamiltonian form (41), the Poisson
operator must be
/1

=
which is evidently regular (Ker(7) = {0}).

5.4 Fluid equation

Here we introduce an example of infinite-dimensional noncanonical Hamil-
tonian mechanics from fluid mechanics theory. Let us consider a two-
dimensional incompressible ideal flow contained in a bounded domain 2 C
R?. ' We denote by P the momentum of the fluid, which is assumed to
be a smooth function on Q. By the incompressibility condition (V- P = 0),
we may write P =' (9,1, —0,1) with a scalar function ¢(z,y). By the

'3Here we define the functional H (1)) on a subspace H*(R*) = {1; ||psi|| < oo, ||V¥|| <
00, ||V29|| < oo}, which is a sens subset of L?(R?).

! For the derivation of the vorticity equation, see Sec. subsubsec:Euler. A vorticity is the
exterior derivative of a momentum. A momentum is a differential 1-form, thus a vorticity
is a 2-form. In two-dimensional space, 2-form has a single component; see Sec. A.3.2 of
Appendix A.
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boundary condition n - P = 0, we may assume ¢ = 0 on the boundary 02.
Let w be a vorticity of P, which is related to ¢ by

-V%) =w (in Q),
{ =0 (on 0N). (48)

Solving the Poisson equation (48), we may write
w = K. (49)

The operator K is a Hermitian operator from L?(Q2) to H?(€2). Choosing
w € L?(Q) to be the state vector, the fluid energy reads

_ 1 2 L
H() = 5 |IPIP = 5w, Kw). (50)
We observe
0uH(w) = Kw. (51)

Denoting
{a,b} = (9:0)(9yb) — (9ya)(:b),

we define a Poisson operator
J = {w,0}. (52)
The Hamilton’s equation (41) reads
Ow = %{w,le} = -V . Vuw, (53)
where V' = P /m is the fluid velocity.

[Q] Derive (53), and show that the two-dimensional version of (62)
reduces into (53) under the barotropic condition.

The Poisson operator of (52) is an inhomogeneous (depending on the

state variable w) differential operator. It has infinitely many Casimir ele-
ments; for every smooth function f(§),

cwmzljwm%

is an Casimir element.
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6 Hamiltonian mechanics of fluids and plasmas

Ideal (energy-conserving) mechanics of a fluid or a plasma is described by a
noncanonical Hamilton’s equation of motion on a function space. Analyzing
the foliation of the phase space, we delineate nontrivial structures that are
self-organized on Casimir leaves.

6.1 Naive forms of fluid/plasma equations

6.1.1 Euler equation and vorticity equation of ideal incompress-

ible fluid

Let © be a fixed domain in R (n = 2 or 3) whose boundary 02 (if it exists)
is a smooth surface.

We denote by P (n-dimensional vector field (in fact, 1-form) defined on
) a fluid momentum (P = mV with a fluid velocity V" and particle mass
m), and by p (scalar function on ) a pressure. We assume that the fluid
is incompressible, and has a constant density which we normalize to unity.
The Euler equation describes the ideal (viscosity = 0) fluid motion:

P+ (V-V)P=-Vp (inQ), (54)
V.-P=0 (inQ), (55)
n-P=0 (ond). (56)
We may rewrite (54) as
OGP -V x(VxP)=-Vj (in9), (57)

where p = p + P?/2m is the total enthalpy of the fluid.
Operating curl on the both-hand sides of (57), we obtain the vorticity
equation:

Ow—V x(Vxw)=0 (in Q), (58)

where w = V x P is the vorticity.

6.1.2 Compressible ideal fluid

In an incompressible fluid, the pressure p is determined to let V' to satisfy the
incompressible condition (55) and the boundary condition (56). Physically,
however, p must be determined by some equation of state in its relation to
the density p (we denote by p the number density, and by p,, = mp the
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mass density,where m is the particle mass) and temperature 7' (or entropy
S) 15

The density p must obey the particle conservation law:

Bip+V - (Vp) = 0. (59)

Including a non-constant density p, the momentum equation (54) be-

comes 17

2

1 P
atP—Vx(VxP):—;Vp—V(

%> (in Q). (60)

In a barotropic model, we assume p~'(Vp) = Vh(p) with a molar en-
thalpy h(p). Since the right-hand side of (60) is an exact differential, the
vorticity equation (58) remains the same.

When we consider a more general equation of state, we invoke o to write
p =p(p,o) and (p)~'(Vp) = Vh(p) — TVo In an ideal fluid, o is conserved
along each streamline: '®

0o +V-Vo=0 (in Q). (61)

In general, the right-hand side of (60) is not an exact differential, and the
vorticity equation (58) is modified as

Ow —V x (V xw) =VT x Vo. (62)

The right-hand side of (62) represents the baroclinic effect, by which vorticity
can be generated.

6.1.3 Charged fluid (plasma)

In a charged fluid (plasma), the momentum and energy (Hamiltonian) in-
clude the electromagnetic (EM) terms. Denoting the four potentials by

5Tncompressibility corresponds to an infinite sound velocity. Hence, for a slow motion of
fluid with respect to the propagation of sound wave may be described by an incompressible
model.

16 A density p is an n-form. In terms of Lie derivative of n-form (Lvp = V- (Vp)), (59)
means O:p + Lvp = 0.

"The momentum P is a 1-form. In terms of the Lie derivative of 1-form (LvP =
-V x (V x P) +V(V - P)), (60) means ;P + Ly P + p~'dp = dE, where the left-
hand side is the variation of momentum and mechanical work of compression, while the
right-hand side is the variation of mechanical energy E = P*/2m.

8Here we consider that o is a O-form (scalar). In terms of Lie derivative of 0-form
(Lvo =V - Vo), (59) means 0,0 + Lyvo = 0.
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(¢, A), and the charge by ¢, we transform

P=mV — P=mV +qA, (63)
2 2
E= m;/ o B="Y" 1 (64)

With these “canonical” momentum and energy, (60) describes the dynamics
of charged fluid: denoting ® = mV?2/2+ h+ q¢, we may write the canonical
momentum equation as

OP -V x (VxP)=-Vd+TVos (in Q). (65)

Combining with the mass conservation law (59) and entropy conservation
law (61), as well as the boundary condition (56), we obtain a system of
charged fluid equations; to determine the EM potentials (¢, A), we must
solve Maxwell’s equations with the four currents (gp, gpV') simultaneously.

Usually, a plasma consists of different species of charged particles (typi-
cally ions and electrons with the total charge approximately canceled), Then,
we consider a multi-species fluid defining macroscopic quantities p, P, h,T, o
for each component.

6.1.4 Magnetohydrodynamics (MHD) model

Instead of considering a plasma as a multi-species charged fluid, we may
formulate a reduced macroscopic equation by just considering that the fluid
can carry a current and receives a macroscopic Lorentz force J x B, where J
is a macroscopic current that is related with magnetic field B by (denoting
by po the vacuum permeability)

VXB:J/,U().

Here we have neglected the displacement current ¢~20,E of Maxwell’s equa-
tion. Combining with Faraday’s law,
{ VYV =V x (VxV)=;-[-Vp+(Vx B) x B/,

B =V x (V x B). (66)

Coupling with the mass conservation law (59) (or, the incompressibility
condition V-V = 0), we obtain as closed system (we do not need to invoke
other relations of Maxwell’s equation).

6.2 Hamiltonian formalism

The foregoing fluid/plasma models are free from dissipations of energy, so
we may cast them in (generalized) Hamiltonian forms.
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6.2.1 Compressible fluid/plasma models

For simplicity we consider a neutral fluid governed by (59)-(60); generaliza-
tion to charged fluids is straightforward by the relations (63) and (64). We
also assume barotropic fluid A = h(p). The state vector is a four-component
function u = (p, P). We consider the entire space 2 = R? and assume that
u vanishes at infinity to avoid the complication by boundary conditions..
The Hamiltonian is the sum of the fluid kinetic energy and the internal en-
ergy (we denote by £ the molar internal energy, which is a function of only
p in the barotropic model; d(p€)/dp =h = & + p/p)

H (u) :/ [P—2+5(,0)] pd3z. (67)

2m

Then, we must define

7= 5 ) @

to reproduce the fluid equations (59)-(60). Notice that the element —p ' (V x
P)x in the operator J is the generalization of (22) by Q +— p~1(V x P);
the latter is a function of space.

[Q] Show that the Poisson operator of (68) is anti-symmetric. Here the
inner product of state vectors is defined as (u,v) = fQ u-v dw.

6.2.2 MHD model

The state vector is u = !(p,mV, B). ' Putting

H = mV2+5(p) p+B—2 . (69)
/{[ 2 240

0 -V 0
J = ( =V =(m/p)(VxV)x (Vxo)xB/p ) (70)
0 V x [o x B/p] 0

we may write the MHD equations (59)-(66) in a Hamiltonian form (18).
[Q] Show that the Poisson operator of (70) is anti-symmetric.

191f the domain © has a boundary 9%, we have to give boundary conditions. Usually,
we assume perfectly conducting boundary, and impose n -V =0, n- B = 0. When
is multiply connected, however, we need also give a flux condition to fix the harmonic
(vacuum) magnetic field. Decomposing B = Bx + By (Bs € L%(Q), By € L%(Q)), the
harmonic part By is fixed by the perfectly conducting boundary, thus the dynamical part
is only By (see Theorem 4); the state vector is u = (p, mV, Byx).
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6.2.3 Incompressible models

To formulate incompressible models (cf. Sec.6.1.1), we need the orthogonal
decomposition of the Hilbert space L2 () of incompressible vector fields and
the orthogonal projection P, onto L2(£); see Appendix B.

In an incompressible system, the pressure term Vp in the momentum
equation must be deemed as a “correction term” to guarantee the incom-
pressibility condition V - P = 0. It is noting but the effect of the pro-
jector Py, i.e. for an arbitrary u € L%*(Q), Pou = u — V¢ with some
Vo e L2(Q)/L2(Q). 2

Applying the projector P, on the both sides of (54), we obtain

oV =-P(VxV)xV. (71)

The Hamiltonian of the incompressible Euler fluid (state vector is u = P is
obtained by omitting the internal energy £(p) (which becomes a constant
when p=1) in (67):

1

H=—|P|> 72
—|IP| (72

The corresponding Poisson operator is
J =-Ps(V x P) x. (73)

Notice that p~! is formally replaced by P,.

By the same reduction and replacements, as well as appropriate nor-
malization of variables, 2! the incompressible MHD equation is given by a
Hamiltonian

H = (IPI*+B|P), (74)

DN —

and a Poisson operator

(—PU(VXV)X P,(V x o) x B >

J = V % [o x B] 0

(75)

6.3 Casimir elements

In the forgoing examples of Hamiltonian formalisms, the Poisson operators
are noncanonical differential operators. Let us find Casimir elements of two
typical examples.

20More explicitly, o is determined, for a given u, by solving a Poisson equation Ay =
V - u with a Neumann boundary condition n - Vo = 0.

'We normalize p = 1, and, by a representative vale of B, B/B. And defining a
representative velocity V' such that mV?/2 = B?/2u0 (which is called the Alfvén velocity),
we normalize V' /V.
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6.3.1 Compressible fluid/plasma model

The Poisson operator (68) of compressible fluid/plasma model (in a plasma,
P is the canonical momentum) has two general Casimir elements: 22

c, = /pd3m (76)
Cy, = %/P-(VxP)d?’x. (77)

Evidently, the constancy of C} implies the conservation of total particle
number. C5 is called the helicity of the vorticity w. For Cs to be a Casimir
element, we need an additional boundary condition

n-w=0 (ondQR).

6.3.2 Incompressible MHD model

For the Poisson operator (75) of incompressible MHD, we have two general
Casimir elements;

o, = %(A-B) (78)
¢, = (V-B) (79)

We call C the magnetic helicity and Cy the cross helicity.

Remark 2 When 2 is multiply connected, the harmonic (vacuum) compo-
nent included in the magnetic field B must fized as a constant field, i.e.
decomposing B = By + By (Bx, € L4(Q), By € L%(2); see Theorem 4),
we have to fix By be temporary constant, and define the dynamical state
vector to be u =' (p,mV, By). Then, the magnetic helicity must be defined
as a functional of Bxy,. We can find a vector potential Ap of the harmonic
field By as a member of L%(Q) [11]. And, the vector potential of By can
be determined as S~!By, € L4(Q), where S : L%4(Q) — L%(Q) is the self-
adjoint curl operator [11]. Using these definitions, we define

1
C, = (Ap,Bs) + §<S_IBE,BE>. (80)

22Here, “general” means that we do not assume any additional conditions on the state
vector u ="' (p, P). If we assume, for example, that u is two-dimensional, then we have
additional (in fact, infinite number of Casimir elements.
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6.4 Beltrami equilibria

Let us continue with the incompressible MHD model. The Hamiltonian (74)
is nothing but the L2-norm of the phase space X = L2(Q2) x L2(Q). Hence,
the equilibrium point of the Hamiltonian is just the vacuum *(V, B) =(0,0).
However, on the Casimir leaves, we find interesting structures. Combining
the Hamiltonian and the Casimir elements (78) and (79), we obtain an
energy-Casimir functional

Hpyypp (u) = H(u) — p1C1(u) — p2Cs(u). (81)

The equilibrium point on the Casimir leaves is found by solving 0, H,, 4, (u) =
0, which reads

V — B =0, (82)
B — ﬂlA - ,U,QV = 0. (83)

Combining (82) and the curl of (83), we obtain
(1-43)V x B=uB. (84)
6.4.1 Beltrami fields
When 13 # 1, (84) reads as the eigenvalue problem of the curl operator.
V x B = \B. (85)

The solution of (85), i.e. the eigenfunctions of the curl operator is called
Beltramsi fields.

A key of the theory is the formulation of self-adjoint curl operator [11]
(for the basic definitions of function spaces, see AppendixB).

Theorem 2 Let Q C R3 be a smoothly bounded domain. We define a curl
operator S in the Hilbert space L%(Q) by

Su = V Xu,
D(S) = {ucIi(Q); VxucIi(Q)})

Then S is a self-adjoint operator. The spectrum of S consists of only point
spectra op(S), which is a discrete set of real numbers.

32



If Q is multiply connected (m > 0), a member of L4(2) has only zero-
flux. We have to extend the domain and range of the curl operator to
the total space L2(f2) of incompressible vector fields to obtain finite-flux
Beltrami fields. As an intermediate step, we consider an extended curl
operator such that

Tu = V Xu,
D(T) = {ucLi(Q); VxucL:(Q))}

Lemma 1 For every A € C\ 0,(S) and for every f € L2(Q), the equation
(T -Nu=f (86)

has a solution in L2((2).

(proof) First we show the existence of 71, i.e., for f € L2(9) we solve
Tu=f.
Let } be the 0-extension of f in R?, i.e.

~ | flz) zeQ,
f(x)_{ 0 z¢gQ.

By f € L2(9), one observes V- f = 0 in R3. We denote by (—A)~" the
vector Newtonian potential. We define

wy =V x [(-A)"1f] in Q.
We denote by Py, the orthogonal projection in L?(£2) onto L% (), and define
uy = Prwy.
Since L% () is orthogonal to Ker(curl), we observe
Vxug=Vxwy=Vx{Vx[(-A)7"f]}.
Since V- [(—=A)~1f] =0,
Vo {V % [(“A) ) = —A[(-A) ] = F.

We thus have a solution 7' f = V x u.
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Next we solve

(T =Nu=f,
for f € L2(Q). We decompose
f=g+h, [g=Psf, heLyQ).
Let ug =7 'h and w = u — ug. Then (86) reads
(T - Nw=g+ug € L%(Q). (87)
For A ¢ 0,(S), we may define
w=(S-\)""(g+Aug) € D(S),
which solves (87). In summary, we have a solution of (86)
u=T 'h+(S—N"YPsf+ T 'h).
(Q.E.D.)
Theorem 3 In L2(Q) we define a curl operator S by

S = V X u,
DS) = {uel(Q); VxuclLi(Q)}

(i) When dim L%I(Qz =0, i.e. if Q is simply connected, S = S. Therefore,
the spectrum of S consists of only real point spectra.

(ii) When dimL2,(Q) > 0, i.e. if Q is multiply connected, S is an ez

tension of S. The spectrum of S consists of only spectra o,(S), and

op(S) = C. In other words, for every A € C, the uniform Beltrami

equation
(S=Nu=0 (88)

has a nontrivial solution.
(proof) The first part is straightforward. We prove the second part. For
A € 0p(8), this has a solution as shown in Theorem 2. We assume X\ € 0,(S).

For h € L?%(9),
(T —XN)v=\h

has a solution (Lemma 1). We easily verify that the function
u=v+h €Li(Q)nH(Q)
solves (88).
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(Q.E.D.)

For the bifurcation of Beltrami equilibria (and tearing mode theory), see
[16].

Example 4 (Chandrasekhar-Kendall eigenfunctions) Let us consider
a periodic cylinder domain Q. In the (r,p,z) cylindrical coordinates (z is
normalized by the longitudinal length of 2), we define

u=AVY xVz)+V x (Vi x Vz), (89)
where

A= (4K, (90)

¥ = Jp(ur)e™PF) ke N, (91)

and Jp, is the Bessel function. We easily find that w is an eigenfunc-
tion of the curl corresponding to the eigenvalue X (€ R), which we call a
Chandrasekhar-Kendall function (CK function for short) [1]. The eigen-
value is determined by the boundary condition n -w = 0 at the surface of
Q. This condition becomes trivial when k =m = 0. For these axisymmetric
modes, we invoke the zero-flux condition

@E:/}pufxzq (92)
b

where Y is a cut of the cylinder, and m is the unit normal vector onto X.
Since V-u = 0, the fluz @y, is independent of the place of . The totality of
CK functions is complete to span the function space L2(Q) of a cylindrical
domain 2 [12].

6.4.2 Alfvén waves

When 32 = 1, (84) has nontrivial solution if g3 = 0, and then, B is an
arbitrary function and V' = £V. This (infinite-dimensional) set of station-
ary solutions can be connected to Alfvén waves [4]. Let us write this static
solution as

B=By+B=e¢,+ B, (93)

where e, = Vz is the unit vector parallel to the coordinate z. We inter-
pret that By is the homogeneous ambient magnetic field. The coupled flow
velocity is, then,

V=V,+V=x(e, +B). (94)
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Galilean boost z — ( = z F t yields a “propagating wave” with wave
fields B(z,y,¢) and V (z,y,¢) = £B(z,1,() on the ambient magnetic field
By = e,, which solves the fully nonlinear MHD equations (66) on the frame
(x,y,¢). In fact, substituting (93) and (94) into (66), we obtain (here we
consider an incompressible model)

{ O+ Vo - V)V =P, (VxV)xV+7P,(V x B) x B, (95)

(0 +Vy-V)B =V x (V x B).

For a boosted quantity f(7,¢) (with 7 =t and { = z — Vit = z Ft), we may
write (0;+ Vy-V) = 0;. Therefore, the foregoing static solution appears as a
propagating wave on the boosted frame, which solves (66) with transforming
t—o>717=tz—>(=zFt,and V — V. Since B is arbitrary, perturbations
of any shape and any amplitude propagate, with conserving the wave form,
at the constant velocity £1 (the Alfvén velocity) in the direction of By = e,.

The foregoing is a new-angle derivation of the well-know non-dispersive
nonlinear Alfvén waves on a homogeneous ambient magnetic field, by which
we notice the fundamental relation between the topological defect of the
MHD system and the strikingly robust property of the nonlinear Alfvén
waves [15].
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7 Conclusion

General theories of physics are composed of two elements: one is space-time
and the other is matter. Space-time is formulated by geometry, while matter
is represented by energy=Hamiltonian. As for geometry, we have proposed
a dichotomy: micro world is canonical=symplectic, while macro world is
noncanonical.

We have identified macroscopic scale hierarchy with a foliated phase
space of noncanonical Hamiltonian systems. The example of magnetized
particles (Sec4) suggests us to interpret a Casimir element (invariant) as
an adiabatic invariant; by coarse-graining (averaging) microscopic angle
variable, the corresponding action variable becomes an adiabatic invariant,
which can be recognized as a Casimir invariant by noncanonicalizing the
corresponding symplectic matrix. We may consider in an opposite way; a
Casimir invariant had an adjoint “angle variable”. By recovering it, the
corresponding kernel of the noncanonical Poisson operator can be removed
(Sec. 3.3), and a perturbation of the Hamiltonian with the “angle variable”
unfreezes the Casimir invariant.

The canonical micro-world geometry is structured by a symplectic 2-
from (field tensor) that is the “vorticity (exterior derivative) of a canonical
1-form. Conversely, we may say that a VORTICITY determines some geom-
etry that dictates dynamics of matter. A fluid vorticity, or a plasma vorticity
(which is accompanied by electromagnetic vorticity=magnetic field ) deter-
mines a “spontaneous” noncanonical geometry that dictates the dynamics of
the fluid or plasma itself (Sec. 6.2). By its noncanonicality, interesting struc-
tures are self-organized on Casimir leaves (Sec. 6.4; for richer structures of
generalized Beltrami fields, see [8] and papers cited there).
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APPENDIX

A Lie algebra

The aim of this appendix is to construct intuitive connections between math-
ematical narratives of space-time and physical understanding of “states”
and “geometry”. For this purpose, we avoid stating rigorous definitions of
mathematical notions —which are available in basic textbooks (for example,
see [3])— instead, we try to put them in more accessible terms of ordinary
language.

A.1 Process and operation

Let us consider two different “processes” A and B occurring on a system.
For example, given a gas in cylinder (a familiar setting of thermodynamics),
A is hearting and B is compression. We denote by & € X an initial “state”
(X is a “space” representing a system), and by Ax the result of the process
A (i.e. A operates from the left). If the process B occurs first, and then A
occurs, the state x will be transformed to ABx. If the order of processes is
reversed, we will obtain BAxz. When the order of processes (or, the “path”
of transformations) changes the results, i.e. AB # BA, we say that the
processes have hysteresis. Denoting the commutation by

[4,B] := AB — BA,

non-commutativity of association=product [A4, B] # 0 is the mathematical
representation of hysteresis.

The “cycles” (as often discussed in thermodynamics) may be represented
as follows: let A~! denote the reversal of the precess A, i.e. A7'4 = AA"! =
I, where the identity I means no change. A cycle composed by two processes
A and B is a chain of processes such as A — B — A™' = B~! On a
plane, one may represent A by a horizontal movement (A to the right and
A~! to the left), and B by a vertical movement (B goes up and B! goes
down), and then, this process draws a anti-clockwise rectangular cycle. By
the product representation of associations of processes, this cycle is written
as B"'A"'BA. If A and B commutes, we may calculate as B~ 'A " 'BA =
B7'A7'AB = I, i.e. the initial state recovers. However, non-commutativity
yields B~'A"'BA # I. The change caused by a cycle, represented by
(B~'A"'BA — I)z, is called circulation, which is a signature of “vortex” in
the space X.
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In the foregoing arguments, we have already invoked the algebraic notion
of group, which is defined as

Definition 1 (group) A set G (of processes) is called a group, if its all
elements satisfy the following conditions:

1. a product AB is uniquely determined as an element of G,
2. A(BC) = (AB)C (associative law),

3. there is a unique element I (called identity) such that IA = AI = A
for every A € G,

4. for every A € G, there is a unique element A~' (called inverse) such
that A7'A = AA™' = L.

In the foregoing example of thermodynamical processes, each process
has an “intensity” parameterized by a real number; for example, heating A
may be scaled by a heat ), and compression B may be scaled by a volume
V. Such “continuous” processes constitute a Lie group:

Definition 2 (Lie group) A continuous set G of processes that are pa-
rameterized by real numbers is called a Lie group.

Example 5 (SO(3)) Let us consider three types of matrices:

cose —sine 0

Ai(e) = sine cose 0 |,
0 0 1
cose 0 sine

As(e) = 0 1 0 ,
—sine 0 cose

1 0 0

As(e) = 0 cose sine |,

0 —sine cose

which represent the processes of rigid-body rotation around the axes z, y, and
x, respectively; the real parameter € scales the “intensity” of each process,
i.e. the rotation angle. The set SO(3) = {Ai(e1), A2(€2), As(es)} is a Lie
group.

[Q] Show that SO(3) satisfies the conditions of Lie group.

[Q] Calculate commutations of the elements of SO(3).
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A process A(e) of is “generated” by some “operation” (in mathematics,
we say “operator”) a, like a motion is generated by a velocity. To put it in
another way, one may identify the causal operation a (which is called the
generator) of a process A(e) by evaluating a “differential”, i.e.

_ A

@ de

e=0

The operator a may be regarded as the “tangent vector” (at the “origin” I)
of the process A(e). For each element of a Lie group G, we may identify a
tangent vector, and by which we may span the tangent space (at the “origin”
I) of the manifold G. The tangent space at the origin I, denoted by T7G, 23
is a vector space endowed with vector calculus and the commutation product

[a,b]. %

Definition 3 (Lie algebra) The tangent space g := T1G of a Lie group G
is a Lie algebra, or a Lie algebra g = {€1a1 + €2a2 + - ; €; € R} generates
a Lie group G = {e1%, €% ... ¢; € R, a; € g}.

Example 6 (s0(3)) The differential of the processes of SO(3) are

0 -1 0
a; = 1 0 0 s

0 0 O

0 01
a; = 0o 00 |,

-1 0 0

0 0 O
az = 0 0 1

0 -1 0

The three-dimensional vector space s0(3) spanned by {ai,as,a3} is a Lie
algebra, which is characterized by a commutation relation

[a1,a2] = a3, ((1,2,3)cyclic).

230r, we may consider the quotient ring TG/G.

*The ring of partial differential operators {19, + a20c, + --- ; a; € R} acting on G
determines the algebraic structure of the Lie ring 77G. The first order derivatives intro-
duces the sum and scalar multiples of T7G. Second order (and higher-order) derivatives
extracts the commutation relations of the products of G, defining the Lie-bracket product
[a,b]. Notice that the Lie ring’s product is not the association such as ab (such product
may not be a member of g), but is the Lie bracket.
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A.2 Moving operator and flow / Vector field

Let us consider a state @ that is a “point” in a Euclidean space X = R".
25 We consider a process that moves the point in the direction of e/ by a
magnitude e:

Aj(€): x> +eel.

Formally, we may write
Aj(e) =1+ Eaxj .

To make a “group” of such processes, we should put
Aj(e) = eeazf,
and define G = {A;(e), -, An(e)}. The Lie algebra of G is
g={€10, + - €0y},

which is evidently a commutative ring.
Generalizing this “homogeneous movement”, we consider processes of
arbitrary movements:

Definition 4 (vector field) A vector field is an element of a Lie algebra
(called tangent bundle of X )

TX = {v'(2)0p + -+ +0"(2)0yn; v’ (z) € C(X)}.
An element v (2)0,; generates a process (infinitesimal flows)
Ti(e) : x — eV @0 g — g 4 ev! (x)e! + O(é?).

[Q] Show that the set TX is “closes” in the sense that every Lie products
[v,w] (v,w € TX) are members of T'X.
A.3 Differential forms
A.3.1 covector / cotangent bundle

In the previous subsection, we have formulated a group of moving processes
(Tj(€)) and the corresponding Lie algebra of operators (v’ (x)0,;). When an

%50One may generalize X to be an n dimensional manifold. Then the following e’ is the
unit vector of its local Euclidean coordinate.
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infinitesimal process Tj(e) occurs on a state = point x, € X, an observable
(a scalar function) f(x) varies as

f(@s) = f(Ti(e)zs) = f(zs) + Uj(w)axjf(m”w:ms-
Hence, the variation (at an arbitrary point) is given by

d

. = v (@)0,/ (@),

e=0

(Tj(e))

Generalized for an arbitrary movement T, (€) generated by a flow (vector)
v =0 (2)0p + - + v"(2)0n, we may write

d

(T (e)

= v/ (2)0, f(=).

e=0 j

One may see this as the application of a differential operator (v - V) on a
scalar function f.
Another interpretation is, denoting

Zvj(w)amjf(w) =v-(Vf),
J

an association of a vector v and a covector Vf (vectors and covectors are
dual; their associations yield real numbers).

The covector Vf is a member of the cotangent bundle T*X, the dual
space of T X, whose member is written as

w = widz' + wodz?® + - - + wydz™.
The duality of TX and 7" X implies
Opida® = 8. (96)
The association of TX and T*X is called an interior product.

A.3.2 differential forms, exterior products, exterior derivatives

In the above calculation of the variation of a scaler function f(x) (we will
denote the space of scalar functions as Fun(X)), we considered a special
covector V f, which may be regarded as an image of a linear map

d: Fun(X) - T*X,
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which is explicitly defined by
df (x) = 0, f(a) da?.
J

We call this differential operator d an ezterior derivative.

A general member of T%X is not necessarily an exterior derivative of a
scalar function. We may regard them also physical quantities; we call them
(differential) “1-forms”. We may further generalize the notion of physical
quantities by introducing exterior products of 1-forms (or T*X): For a pair
of 1-forms a = Y ajda’, B =Y Bjdx?, we define their exterior product by

alfp= Z ;B dx? A da®. (97)
Jk=1

Here, the wedge product A is defined by an antisymmetric relation
da? A da® = —da® A da? . (98)
Evidently, dz/ A dz/ = 0. By (98), we may rewrite (97) as
alf= Z(ajﬁk — akﬁj)dmj A dax®.
j<k

The exterior product a A 3 (which we call a 2-form) is a member of the
A?T*X, which is a linear space of dimension (g) having a basis {dz? A
dak;1 <j <k <nl.

Continuing the exterior products, we may define p-forms. The linear
space APT* X of p-forms is of dimension (Z) (hence, p < n), and has a basis

{sgn(o;)dz/ Nda?> A+ Ndadr; 1 <y < - < jp < b, (99)

sgn(o;) is the sign of transpose o;.
We are ready to generalize the exterior derivative d to be differential
operators mapping a p-form to a (p 4+ 1)-form. For an r-form (r < n — 1)

w = Z wjl...jrdle A-ee Adadr,
J1<j2 << Jr
we define
dw = Z (dwjy.j,) Adx? A - Adad,
J1<j2<<gr

which is an (r 4+ 1)-form. Or, we may put

dw = dez A (Opew).
14

[Q] Consider n = 2,3 and 4, and find what are the d in each dimension.
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A.4 Lie derivatives

For a scalar-function observable f(z) (0-form € X), a state is represented
by a point s € X, and the physical quantity evaluates as

f(@s) == f(@)|e=a, = (f,0(x — ;). (100)

As we have seen, a flow Ty (€) moves xs and causes a variation of f(x) as
(evaluating for general x)

d

(T ()

= (@), f ().
e=0 j

We have introduced the notion of “interior product” between the vector
v € TX and covector df € T*X, which we denote

ivdf.

The left-hand side is called a Lie derivative associated with the flow v, which
we denote by L, f, i.e. for a scalar function (0-form), we write the variation
caused by a flow v as

va = ivf-

In the preceding subsection, we have generalized the notion of physical
quantity to p-forms. As a state corresponding to a O-form physical quantity
is a “point”, a 0-dimensional geometric object, a state corresponding to a
p-form physical quantity (w) must be a p-dimensional geometric object €2,
and its value is evaluated as, generalizing (100)

w(w)|Q:/Qw. (101)

The process T, (€) now moves €. The resultant variation is

[om [ o
Q w(€)Q2

and its derivative with respect to € defines the Lie derivative fQ Lyw.

Let us calculate L,w explicitly. We denote T, (e)Q2 = Q.. We also denote
by X, the domain over which T, (€)Q2 sweeps as € increases, which as a p+ 1-
dimension manifold and its boundary is

0Xe=Q: U —Q U €0 X u.
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Using these notations, we may calculate
d 1

— w = lim- w
de Ty (€)Q e—0 €

Qe—0
e L]
= lim - w — w
e=0¢€ | Jox, €ONXu
T
= lim - / dw+e/ iuw]
e—0 € L . 90

LT
= lim - e/ dw+e/ d(iuw)]
e—0 € L Jux©Q Q

= /(iudw + diyw).
Q

Hence, we may write
Lyw = (iyd + diy)w, (102)

where i, is the interior product with the vector v based on the duality (96),
which maps a p-form to a (p — 1)-form (for a 0-form f, we define i, f = 0).

B Orthogonal decomposition of L?(Q)

Let Q C R? be a bounded domain with a smooth boundary 92. We consider
cuts of the domain Q. Let ¥y ---%,, (m > 0) be cuts such that ¥, N 3; =
0 (i # j), and such that @\ (U, X;) becomes a simply connected domain.
The number m of such cuts is the first Betti number of ().

When m > 0, we define the flux through each cut by

@Ei:/ n'ude’ (i:132a"'?m)?
3

where 1 is the unit normal vector on ¥; with an appropriate orientation. By
Gauss’s formula @y, is independent of the place of the cut X;, if V-u =0
in 2 and n-u =0 on 0Q.

We define the following subspaces of L?(f2);

I4(Q) = {w; V-win Qn-w=0 on 90, Vdy, = 0},
L3%(Q) = {h; V-h=0,Vxh=0inQn-h=0on 00},
L&(Q) = {Vé Ap=0inQ},

L%(Q) = {V¢; ¢ =0on 9N}

Here each subspaces are defined by taking the closure in L?(Q) of the set of
smooth functions which satisfy the specified relations.
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Theorem 4 We have an orthogonal decomposition [2, 9]

L2(Q) = L§(Q) © LE(Q) © Lg(Q) © Ly (Q).

Evidently,

Ker(div) = L(Q)® L% (Q) ® LE(Q),
Ker(curl) = L%(Q) @ LL(Q) ® L3(Q).

The space of solenoidal vector fields with vanishing normal component on
the boundary is given by

L3(Q) = LE(Q) & L ().

This relation is called the Hodge-Kodaira decomposition. The subspace
L%{(Q) corresponds to the cohomology class, whose member is a harmonic
vector field and dimL%(Q) = m (the first Betti number of ). 26 27 When
Q is simply connected, then m = 0 and L%I(Q) = (). We have the following
expression

IA(Q) ={Vxw; weH(Q), V-w=0in Q,n x w =0 on 9N}.

This implies that a function in L%({2) can be expressed by the curl of a
vector potential with the boundary condition n x w = 0. We note that a
member of L2(Q) may not allow such an expression.

We also note

L*(Q) = Ly(Q) @ {V¢; ¢ € H' (D)},

which implies that L2(Q) is the orthogonal complement of the space of
gradient fields [10]. This relation is called the Weyl decomposition.

26Basic relations between harmonic forms and the cohomology classes were studied by
KODAIRA, K. (1948) Ann. of Math. 50, 587. For the theory of differential forms on
manifolds with boundaries, see DUFF, G. F. D. (1952) Ann. of Math. 56, 115; DUFF, G.
F. D. & SPENCER, D. C. (1952) Ann. of Math. 56, 129; CONNOR P. E. (1954) Proc.
Nat. Acad. Sci. 40, 1151. See also Theorem 7.7.7 of MORREY, C. B. (1966) Multiple
Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, New York.

2"In electromagnetism, L% (R2) corresponds to the space of vacuum magnetic field with
vanishing normal component at the wall; see WERNER, P. (1983) J. Math. Anal. Appl.
92, 1; KOTIUGA, P. R. (1987) J. Appl. Phys. 61, 3916.
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