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ABSTRACT

.
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1 The conventional “helicity” is not conserved in a relativistic
barotropic flow (giving rise to a cosmological seed magnetic
field/vorticity [Mahajan-Yoshida, PRL 105 (2010), 095005]).

.

.
.

2 Loops do not link in 4D space; hence it might be thought that
topological constraints on magnetic field lines are removed in a
relativistic space-time.

.

.

.

3 But, this is not true! There is a topological constraint.

.

.

.

4 We formulate a “relativistic helicity” in the 4D Minkowski space-time,
which is conserved in a barotropic fluid/plasma.

.

.

.

5 We delineate the topological meaning of the relativistic helicity by
analyzing the linking number of “vortex filaments” (pure states of
non-commutative Banach algebra).

.
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6 The non-conservation of the conventional helicity is because vortex
filaments are no longer pure states in relativistic dynamics.
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Background I
vortex — common structure in the Universe

Cited from http://www.astronomynotes.com/cosmolgy/s12.htm

How was the first vortex created?
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Background II (Kelvin’s circulation theorem)

For a co-moving loop L(t), the rate of change of the circulation is

d
dt

∮
L(t)

P · `dξ =

∮
L(t)

[∂tP − v × (∇× P)] · `dξ.

In a barotropic fluid,

∂tP − v × (∇× P) = −∇(h + mv2/2).

Thus, we obtain Kelvin’s circulation theorem:

d
dt

∮
L(t)

P · `dξ = 0.

Generalizing P = mv + qA, we obtain the circulation theorem for the
canonical momentum.

Neglecting the electron mass (MHD model), we obtain the circulation
theorem for the magnetic field, i.e. Alfvén’s theorem.
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Background III (baroclinic effect)

.

.
.

1 For a general vector v and a covector (1-form) P,

d
dt

∮
L(t)

P =

∮
L(t)

(∂t + Lv)P.

.

.
.

2 An ideal equation of motion may be written as

(∂t + Lv)P = dε

with some scalar ε (representing the total enthalpy).

.

.

.

3 Hence, a momentum (1-form) generated by a scalar (0-form) is
naturally “exact”, posing a challenge of generating a vortex (2-form).

.

.

.

4 The space-time distortion by the relativistic effect, however, brings
about a relativistic baroclinic effect, breaking the exactness of the
thermal force:

(∂t + Lv)P = γ−1dε.

This mechanism can create a seed magnetic field (EM vorticity) in a
cosmological plasma; [Mahajan-Yoshida, PRL 105 (2010), 095005]

Z. Yoshida (U. Tokyo) Geometrical Theory of Vortex 2013/11/12 5 / 20



Background III (baroclinic effect)

.

.
.

1 For a general vector v and a covector (1-form) P,

d
dt

∮
L(t)

P =

∮
L(t)

(∂t + Lv)P.

.

.
.

2 An ideal equation of motion may be written as

(∂t + Lv)P = dε

with some scalar ε (representing the total enthalpy).

.

.

.

3 Hence, a momentum (1-form) generated by a scalar (0-form) is
naturally “exact”, posing a challenge of generating a vortex (2-form).

.

.

.

4 The space-time distortion by the relativistic effect, however, brings
about a relativistic baroclinic effect, breaking the exactness of the
thermal force:

(∂t + Lv)P = γ−1dε.

This mechanism can create a seed magnetic field (EM vorticity) in a
cosmological plasma; [Mahajan-Yoshida, PRL 105 (2010), 095005]

Z. Yoshida (U. Tokyo) Geometrical Theory of Vortex 2013/11/12 5 / 20



Background III (baroclinic effect)

.

.
.

1 For a general vector v and a covector (1-form) P,

d
dt

∮
L(t)

P =

∮
L(t)

(∂t + Lv)P.

.

.
.

2 An ideal equation of motion may be written as

(∂t + Lv)P = dε

with some scalar ε (representing the total enthalpy).

.

.

.

3 Hence, a momentum (1-form) generated by a scalar (0-form) is
naturally “exact”, posing a challenge of generating a vortex (2-form).

.

.

.

4 The space-time distortion by the relativistic effect, however, brings
about a relativistic baroclinic effect, breaking the exactness of the
thermal force:

(∂t + Lv)P = γ−1dε.

This mechanism can create a seed magnetic field (EM vorticity) in a
cosmological plasma; [Mahajan-Yoshida, PRL 105 (2010), 095005]

Z. Yoshida (U. Tokyo) Geometrical Theory of Vortex 2013/11/12 5 / 20



Background III (baroclinic effect)

.

.
.

1 For a general vector v and a covector (1-form) P,

d
dt

∮
L(t)

P =

∮
L(t)

(∂t + Lv)P.

.

.
.

2 An ideal equation of motion may be written as

(∂t + Lv)P = dε

with some scalar ε (representing the total enthalpy).

.

.

.

3 Hence, a momentum (1-form) generated by a scalar (0-form) is
naturally “exact”, posing a challenge of generating a vortex (2-form).

.

.

.

4 The space-time distortion by the relativistic effect, however, brings
about a relativistic baroclinic effect, breaking the exactness of the
thermal force:

(∂t + Lv)P = γ−1dε.

This mechanism can create a seed magnetic field (EM vorticity) in a
cosmological plasma; [Mahajan-Yoshida, PRL 105 (2010), 095005]

Z. Yoshida (U. Tokyo) Geometrical Theory of Vortex 2013/11/12 5 / 20



Background IV (helicity)
conventional definition of helicity

The conventional helicity of b = ∇× a is (on a fixed Ω ⊆ R3)

C =

∫
Ω

a · b d3x . (1)

In a fluid/plasma, we consider the canonical momentum
a ← P = mv + qA and its vorticity b ← ω = m∇× v + qB.

In a barotropic fluid, P obeys

∂tP − v × ω = −∇ε, (2)

where ε = h + mv2/2 + φ (h(ρ): enthalpy, φ: E potential).

Under a boundary condition n · b = 0, C is conserved.
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Background V (linking number)
conventional definition in R3

To delineate the topological meaning of C in the simplest form,
consider a pair of vortex filaments:

bd3x = `1dξ1 + `2dξ2,

where `1 and `2 are δ-measures on loops Γ1 and Γ2.

By (generalized) Stokes’ formula,

C =

∫
R3

a · b d3x =

∮
Γ1

a · `1dξ1 +

∮
Γ2

a · `2dξ2 = 2L(Γ1, Γ2). (3)

By Biot-Savart integral, we may write

C = 2 × 1

4π

∮
Γ1

∮
Γ2

(x1 − x2) · `1dξ1 × `1dξ2

|x1 − x2|3
. (4)
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Basic definitions about Minkowski space-time (1)

We denote the Minkowski space-time by M ∼= R4; on a reference
frame, we write

xµ = (ct, x , y , z), xµ = (ct,−x ,−y ,−z).

The space-time gradients are denoted by

∂µ =
∂

∂xµ
=

(
∂

c∂t
,∇

)
, ∂µ =

∂

∂xµ
=

(
∂

c∂t
,−∇

)
.

The relativistic 4-velocity is defined by the proper-time derivative:

Uµ =
dxµ

ds
= (γ, γv/c), Uµ =

dxµ

ds
= (γ,−γv/c),

where ds2 = dxµdxµ and γ = 1/
√

1 − v2/c2.
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Basic definitions of Minkowski space-time (2)

The fluid 4-momentum is a 1-form P = Pµdxµ ∈ T ∗M with
Pµ = (h/c) Uµ (h is the molar enthalpy, h/c2 is the effective mass
density).

For a charged fluid (plasma), the canonical 4-momentum is
P = P + qA, where q is the charge.

The 4-velocity Uµ is a vector field U = Uµ∂µ ∈ TM, which generates
a diffeomorphism TU(s) by

d
ds

TU(s) = U, (5)

The “t-plane cross-section” is, for a fixed parameter t ∈ R,

Ξ(t) = {(x0, x1, x2, x3); x0 = ct, (x1, x2, x3) ∈ X}. (6)

The “proper time s-plane cross-section” is

Ξ̃(s) = TU(s)Ξ(0). (7)
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Relativistic Fluid/Plasma Equation

In terms of the canonical momentum P = P + qA, the matter-EM
field tensor is a 2-form

M = dP = ∂µPνdxµ ∧ dxν .

The equation of motion reads, assuming a barotropic relation
TdS = dθ,

iUM = −c−1dθ. (8)

Or, invoking the Lie derivative,

LUP = c−1d(h + q% − θ). (9)
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Notation (EM analogy)

The canonical momentum (or dressed EM potential) is

Pµ = (P0, P) ≡ Aµ = (A0, A). (10)

EM vectors:

E = −∇A0 − (1/c)∂tA,

B = ∇× A.

Field tensor:

Mµν = ∂µPν − ∂νPµ =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (11)
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Semi-Relativistic Helicity (Nöther charge)

The helicity C =
∫
X a · b d3x is naturally generalized as

C =

∫
X

A · Bd3x . (12)

We find

d
dt

C = c

∫
X

E · B d3x = 2

∫
X

γ−1B · ∇θ d3x

= −2

∫
X

θB · ∇γ−1 d3x , (13)

showing that the relativistic factor γ can break the constancy of the
helicity.
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Relativistic Helicity
a new constant in a relativistic plasma

We define a generalized helicity C in the Minkowski space-time by the
integral of the 3-form K = P ∧ dP over a co-moving 3D spatial volume
V (s) = TU(s)V0 (V0 ∈ Ξ(0)):

C(s) =

∫
V (s)

P ∧ dP. (14)

.

Theorem

.

.

.

. ..

.

.

The helicity C(s) is a constant of motion:

d
ds

C(s) = 0.
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What does the helicity conservation constrain?

.

. . 1 A pair of geometric objects (chains) having co-dimension ≤ 2 may
link; for example, two loops may link in R3.

.

.

.

2 Two loops do not link in R4.

.

.

.

3 However, the relativistic helicity conservation does impose a
topological constraint.

.

.

.

4 Since the vorticity M = dP is a 2-form, the helicity describes the link
of 2D surfaces in 4D space-time.

.

.

.

5 The link of surfaces yields a topological constraint on loops
(vortex-filaments) that are the s-plane (or t-plane) cross sections of
the vorticity surfaces.
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Pure state of differential forms
A generalization for non-commutative Banach algebra

.

Definition (pure sate)

.

.

.

. ..

.

.

Let M be a smooth manifold of dimension n, and Ω ⊂ M be a
p-dimensional connected null-boundary submanifold of class C 1.
Each Ω is equivalent to a pure-sate functional ηΩ on ∧pT ∗M:

ηΩ(ω) =

∫
Ω

ω =

∫
M

J(Ω) ∧ ω,

where J(Ω) = ∧n−pδ(xµ − ξµ)dxµ is a δ-measure supported on Ω.
We call J(Ω) a pure state (n − p)-form, which is a member of the
Hodge-dual space of ∧pT ∗M.
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Pure state vorticity and B-filament

A pure-state functional ηΣ(ω) =
∫
Σ ω of vorticity 2-forms ω is

J(Σ) = δΣ ∗ dy1 ∧ dy2 = δΣm, m =
1

2
mµνdxµ ∧ dxν , (15)

where δΣ is the 2D δ-function supported on a surface Σ,

On the s-plane cross-section Γ̃(s) = Ξ̃(s) ∩ Σ, we obtain a pure-state
“relativistic B-filament”, which is a singular 3-form such that

Jb(Γ̃(s)) = ρ̃b(s)J(Σ) = −δΞ̃(s)U ∧ J(Σ), (16)

where U = Uµdxµ.

G(0)

G( )s

S

dydx

dx

dy
1

1

2
2

~

t
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Helicity and circulation

.

. .
1 Consider a pair of disjoint loops Γ̃1(s) and Γ̃2(s), and their orbits

Σ1 =
∪

Γ̃1(s) and Σ2 =
∪

Γ̃2(s).

.

.

.

2 On each Σ`, we give a pure-state vorticity M` = J(Σ`).

.

.

.

3 Then, on each Γ̃`(s), we obtain a pure-sate B-filament Jb(Γ̃(s)).

.

.

.

4 Denoting M = M1 + M2 and P = P1 + P2 = FM1 + FM2, the
relativistic helicity of the twin vorticity evaluates as

C(s) =

∫
V (s)

P ∧M =

∫
Γ̃1(s)

P2 +

∫
Γ̃2(s)

P1. (17)
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The LW integral operator

.

Lemma (LW integral)

.

.

.

. ..

.

.

We denote δ = ∗d∗, and ¤ = δd + dδ (d’Alembertian). We invert ¤ by
the Liénard-Wiechert integral operator, which we denote by ¤−1. We can
define

P = FM = ¤−1δM. (18)
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Link in Minkowski space-time

.

Theorem (link in Minkowski space-time)

.

.

.

. ..

.

.

Let M = M1 + M2 be a twin vortex generated by a pair (` = 1, 2) of
pure-state B-filaments Jb(Γ̃1) and Jb(Γ̃2).

.

.

.

1 The relativistic B-filaments Jb(Γ̃`(s)) continue to be pure states.

.

.

.

2 The relativistic helicity

C(s) =

∫
Γ̃1(s)

FM2 +

∫
Γ̃2(s)

FM1. (19)

is a constant of motion.

.

.

.

3 The constant C(s)/2 is the linking number L(Γ̃1(s), Γ̃2(s)), which
may be represented as (generalizing Gauss’ integral)

L(Γ̃1(s), Γ̃2(s)) =

∫
FM2 ∧Jb(Γ̃1(s)) =

∫
FM1 ∧Jb(Γ̃2(s)). (20)
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Conclusion

.

. .
1 A relativistic helicity C(s) has been formulated, which is conserved in

a barotropic flow.

.

.

.

2 The conservation of C(s) imposes a topological constraint on the
relativistic B-filaments in the Minkowski space-time.

.

.

.

3 A pure-state relativistic B-filament continues to be a pure state
(whereas the t-plane B-filament is not a pure state).

.

.

.

4 For a pair of pure-state B-filaments, C measures their linking number.

.

.

.

5 ZY, Y. Kawazura and T. Yokoyama, Relativistic helicity and link in
Minkowski space-time; arXiv:1308.2455
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