Proto-RTにおける電子入射による プラズマバイアス実験

東大新領域,東大高温プラズマ研究セ^A 齋藤晴彦, 吉田善章, 比村治彦, 森川惇二^A, 深尾正之^A, 渡邉将

- 1. 研究背景: 内部導体系プラズマ中の流れ駆動
- 2. 電極を用いた径方向電場の形成実験
- 3.電子入射時のプラズマの応答
- 4.まとめと今後の課題

日本物理学会 2004年第59回年次大会 28aW H - 2

研究背景と本研究の目的

- · 流れを持つプラズマの平衡状態* (Double Beltrami state) 内部導体系閉じ込め装置**における実験的な検証
- Proto-RT(Prototype-Ring Trap)
 - ・トロイダル非中性(純電子)プラズマの入射と閉じ込め
 - ・プラズマの内部電場構造・流れの駆動:バイアス実験
 - 2.45GHz, 10kW ECHプラズマを用いた高速流(~ Alfvén速度)の駆動,流れの効果の検証実験(2004年4月~)

- RFプラズマのバイアスの基礎実験 (~100G,13.56MHz RF放電プラズマ)
 - ・内部導体上電極への電圧印加
 - ·LaB6カソードからの電子ビーム入射

径方向電場の形成·流れ駆動の条件 プラズマの応答の基本的特性の理解

Proto-RT装置

- * S. M. Mahajan and Z. Yoshida, Phys. Rev. Lett. **81**, 4863 (1998).
- * 講演 30pXH-13,14, Z. Yoshida et. al., in Non-neutral Plasma Physics III.

実験装置Proto-RTの構成

- · Dipole磁場(內部導体)+垂直磁場 Center null配位(磁場強度B~100G)
- ・13.56MHz RF**による水素プラズマ** ループアンテナ(誘導結合型),~500W
- ・プラズマのバイアス
 - · 電極 真空容器間 600V,1A
 - ·電子ビーム入射 1kV, ~1A(drain)
 - 入射電流,空間電位分布構造
 (エミッシブLangmuirプローブ)
 - ・プラズマパラメータ

電子密度n_e=10¹⁵m⁻³, 電子温度T_e=10eV 水素ガス圧4×10⁻⁴Torr (n_n=1×10¹⁹m⁻³) イオン-中性粒子衝突周波数 v_{in}=2×10⁴s⁻¹ イオンサイクロトロン周波数 f_{ci}=1×10⁶s⁻¹ Alfvén速度 v_A=7×10⁶ms⁻¹ イオン音速 C_S=3×10⁴ms⁻¹

電極によるバイアス電圧の印加

·空間電位分布構造

負電位バイアス

径方向電場ERと中性衝突による電流密度 jR

$$j_R = \frac{m_i \omega_{ci}^2}{q^2 n_i v_{in}} E_R \cong 3 \times 10^{-5} E_R$$

E_R= ~ 2×10³Vm⁻¹ (プラズマ内部) トロイダル流速: 2×10⁵-1×10⁶ms⁻¹

Z=0における電位分布(Vic=-600~+600V)

正負バイアス時の電位分布(ポロイダル断面)

電位の上昇(電流の飽和以上)

エッジの電場強度が増大

正電位バイアス

イオン捕集:真空容器壁 (閉じ込め領域外部)

径方向電流の不足 プラズマ内部の 電場形成が不可能

低密度領域に電場集中

電子入射時のプラズマ中の空間電位

- LaB6カソードからの電子の入射 カソード-アノード間の印加電位による初期加速
- プラズマ中の電位分布 電位勾配は形成されず、全域でほぼ平坦 入射電子ビーム電流の増加 ⇒空間電位はゼロ付近で飽和する傾向
 - ・カソード-真空容器間に電位印加
 - ▶トロイダル磁場の追加
 - ⇒いずれも電場は有効に形成されない

純電子のみによる空間電位の形成

200V

10-4

10-3

(上) 電子入射時のプラズマの空間電位/電極電位 (下) カソードからの引き出し電流と入射電流

H₂ pressure (Torr)

10-5

- 中性ガス中への電子の入射 (RF無し)
- 実験条件:電子銃加速電圧Vacc=200~1000V (カソード-アノード間)

内部導体電極は浮遊電位

Center null磁場配位 (中性プラズマ実験と同様)

形成される空間電位の減少
 PH2=10⁻⁶Torr付近~:
 (RF放電不可能な真空度領域)

中性粒子との衝突による 電子閉じ込め性能の悪化

プラズマ中に電子による 電場が形成されない

電子入射による電場形成の問題点

- ・電子の閉じ込め時間(電子ビーム入射中) 入射ビーム電流,形成電位(P=10⁻⁵Torr) τ~10⁻⁷C/0.1A=10⁻⁶s
- ・磁場中の電子プラズマの閉じ込め時間

 λ_D : Debye length r_L : Larmor radius v_{en} : electron-neutral collision frequency (classical diffusion time of electrons)

$$t_0 = \lambda_D^2 / v_{en} r_L^2$$

観測される電子のロスは2桁程度早い (入射電子が初期に全て閉じ込め 領域に進入することを仮定)

- ・電子ビームの滞在軌道/電子損失の問題点 軌道的なロスの可能性,径方向電流(電場)を形成しない? 構造物その他の拡散機構による電子のロス
- ・今後の対策 電子源の大電流化,カソード位置の改善 低ガス圧(10-6-10-5Torr)におけるプラズマの生成

まとめと今後の課題

- · 内部導体型閉じ込め装置 (Proto-RT,13.56MHz RF)における 径方向電場·流れの駆動 , プラズマの応答の理解 .
 - 1. 電極を用いた外部電場
 - 2.LaB6カソード電子銃からの電子ビームの入射
- 電極に負電位を与えた際、プラズマ内部に電位形成、 トロイダル方向のE×B速度~10⁵m/s(イオン音速以上).
 (粒子輸送には中性衝突が支配的: ne=10¹⁵m⁻³, Te=5eV)
- ・電子ビーム入射時のプラズマ内部の空間電位はゼロ (真空容器電位)付近で飽和する傾向.
- · 入射電子の軌道(径方向に有効に電場が駆動されない) による問題,構造物等による電子損失の可能性.
- ・ECHによるプラズマの高性能化, 高速流の駆動.