Proto-RTにおける径方向電場引加 によるプラズマ流の駆動実験

東大新領域,東大高温プラズマ研究セ^A 齋藤晴彦,吉田善章,比村治彦,森川惇二^A,深尾正之^A,若林英紀

- 1.研究の背景と目的
- 2.実験装置と計測器の構成
- 3. 電位制御と流れの駆動
- 4.まとめと今後の課題

日本物理学会 2003年 年次大会 30pYJ-10

・内部導体系プラズマ・トラップ ポロイダル磁気面 + トロイダル磁場配位による閉じ込め 応用:二流体プラズマによる平衡状態の実験研究 流れの駆動 プラズマ密度等のパラメータ,平衡への影響 電場・E×B ドリフトによる流れ場の構造の理解 Proto-RT (Prototype-R ing Trap) 垂直磁場コイル 内部導体系のプラズマ(水素 13.56M Hz R F) における電場・流れ場の駆動 RFアンテナ Dipole・垂直磁場コイルによる配位 ・内部導体 (dipoleコイル)上に電極 内部導体コイル/雷極

E×B ドリフトによる流れの駆動

P ro to-RT装置

弱電離プラズマ中の電場と流れ

n _e	電子密度	$1 \times 10^{14} \text{m}^{-3}$
T_{e}	電子温度	5eV
T _i	イオン温度	~ 1 eV
n _n	中性粒子密度	8.8 × 10 ¹⁸ m ^{−3}
В	磁場強度	0.01 T
ω_{ci}	イオンジャイロ周波数	1.0×10 ⁶ rad s ⁻¹
$\nu_{\rm ni}$	中性粒子イオン衝突周波数	3.7×10 ⁴ s ^{−1}
${\cal V}_{ m ie}$	イオン-電子衝突周波数	4.7 s ^{−1}
$ u_{_{\rm ii}}$	イオンーイオン衝突周波数	6.9 s ⁻¹
V _{ExB}	E×Bドリフト速度	3.0 × 10⁵ ms⁻¹
Cs	イオン音速	3.1 × 10 ⁴ ms ^{−1}
Va	アルフベン速度	6.9 × 10 ⁷ ms ^{−1}

Proto-RT プラズマのパラメータ

 $(\omega_{ci} / \nu_{ni})^{2} \sim 10^{3} >> 1$ $\nu_{ni} >> \nu_{ie}$: 中性衝突が支配的 内部導体系でのイオンの運動 : $\mathbf{v}_{i\perp} = \frac{q \nu_{ni}}{m_{i} \omega_{ci}^{2}} \mathbf{E} + \frac{\mathbf{E} \times \mathbf{B}}{B^{2}}$

> 磁気面を横切る径方向運動 (中性衝突による輸送)

径方向の電場 Er と電流密度jr: jr = 1.9×10⁻⁴ Er 電極電流 1A v_{ExB} ~5×10⁵ms⁻¹(>イオン音速)

トロイダル方向のドリフト運動 (~ E×Bドリフト速度 V_{E×B})

電極に低電圧(~100∨)印加時 (E×Bドリフト速度 < イオン音速)</p>

電位分布

(エミッシブプローブによる計測) 電極とプラズマ生成部付近にピーク E×B 速度: 電位勾配/磁場 (コイル)

・Mach probe 計測による流速分布 ~ E×B 速度場とほぼ同様

> 中性衝突が支配的な磁化 プラズマ中の粒子運動と一致

(流速はイオン音速以下)

まとめ

<u>結論</u>

- 内部導体系の弱電離プラズマ(n_e~10¹⁴ m⁻³, ~10⁻⁵)で, 電極による径方向電場(~3 kV/m)を形成し, イオン音速度(~2×10⁴ m/s)程度のトロイダル流を駆動.
- ・電極電位が低電圧(E×Bドリフト速度~<イオン音速)時,
 E×Bドリフト速度に近いプラズマ流を駆動.
- ・高電位印加時,流速等の上昇が飽和(~イオン音速). 流体的な効果による流れの上限を示唆.

<u>今後の課題</u>

・ 流速の向上と計測の高精度化.