内部導体装置Proto-RTにおける 外部電場を用いたプラズマ電位分布構造の制御

東大新領域,東大高温プラズマ研究セ^A 齋藤晴彦,吉田善章,比村治彦,森川惇二^A,深尾正之^A,若林英紀

1.研究背景:内部導体系プラズマ中の流れ駆動

2. 電極を用いた径方向電場の形成実験

3. 電子銃からの電子入射による非中性化

4.まとめと今後の課題

日本物理学会 2003年 秋季大会 23aYA-6

研究背景と本研究の目的

<u>流れを持つプラズマの平衡状態と構造*の実験的検証</u>

- 内部導体系プラズマ閉じ込め装置
 Dipoleコイル + 垂直磁場コイルによるポロイダル磁場配位
 径方向電場の形成 E × Bドリフトによるトロイダル流の駆動
 流れがプラズマに与える効果の検証
- ・ Proto-RT (Prototype-Ring Trap) 装置
 磁場配位: Dipole磁場(常伝導,10kAt), 重直磁場,トロイダル磁場コイル (~100G,13.56MHz RF放電プラズマ)
 ・ NEPンテナL/C 電場形成 : 内部導体上に設置した電極 : LaB6カソード電子銃
 ・ Dipole磁場(常伝導,10kAt), 重直磁場、トロイダル磁場コイル (~100G,13.56MHz RF放電プラズマ)
 ・ Tomiş体上に設置した電極 : LaB6カソード電子銃

Proto-RT r-z断面と,装置内部のRFアンテナ・電極

径方向運動

(中性衝突による輸送)

Proto-RT プラズマのパラメータ

n _e	電子密度	1 × 10 ¹⁵ m⁻³
T _e	電子温度	5eV
T _i	イオン温度	~0.5eV
n _n	中性粒子密度	8.8 × 10 ¹⁸ m ⁻³
В	磁場強度	0.01 T
ci	イオンジャイロ周波数	1.0 × 10 ⁶ rad s⁻´
ni	中性粒子-イオン衝突周波数	5.9 × 10 ⁴ s⁻¹
ie	イオン-電子衝突周波数	4.7 s⁻¹
ii	イオン-イオン衝突周波数	6.9 s⁻¹
V _{ExB}	E×Bドリフト速度	3.0 × 10⁵ ms⁻¹
Cs	イオン音速	2.2 × 10 ⁴ ms⁻¹
Va	アルフベン速度	7.0 × 10 ⁷ ms⁻¹

 \mathbf{V}_i

 m_i

ci

3 (kV/m) $V_{IC} = -600V$ -500V E-400V 2 -300V ш -200V Radial E -100V 中性衝突が支配的な低密度プラズマ $(10^{5} m/s)$ 2 - VIC=-600 ポロイダル配位でのイオンの運動 -100V $\frac{q_{ni}}{2}\mathbf{E}$

 $j_r \sim 10^{-3} \times Er$ (主にイオン電流) 電場:~3kV/mで飽和。 電流密度:~1.7A/m トロイダル周回運動 ~ E × B ドリフト速度 **RF** antenna $(z=\pm 8.5cm)$ 160 120F (10,08 E/B (40 m n 35 36 37 38 39 40 41 42 R (cm) 電位勾配とE×Bドリフト速度の計算値

 ・電子銃による入射
 Cathode-anode間電位による初期加速 プラズマ外部/周辺部からの電子注入

LaB₆カソード電子銃 引き出し電流~1A,加速電圧~1kV RFプラズマへの電子入射実験

<u>電子銃の構造と配置</u> 13.56MHz rf による誘導結合 プラズマ中における電子銃

LaB₆ cathode

まとめと今後の課題

・内部導体型閉じ込め装置Proto-RTにおいて,

- 1. 電極を用いた外部電場
- 2.LaB₆カソード電子銃からの電子ビームの入射

による径方向電場の生成実験を行った.

・粒子輸送には中性衝突が支配的(ne=10¹⁵m⁻³, Te=5eV),
 電極バイアス時の電流値と径方向電場強度の傾向と一致.

・ 電極に負電位を与えた際、プラズマ内部に電位形成、
 トロイダル方向のE×B速度~10⁵m/s(~イオン音速度).

・電子入射によるプラズマの空間電位の降下は~30Vで、
 空間電位の最低値はゼロ付近、プラズマを介した電子損失、

・電子入射実験に関して,磁場配位/強度の改善等を検討中.