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Motivation Methods

We aim to create magnetically confined electron-positron In order to create pair-plasmas, we plan to develop the PAX
plasma in a laboratory. These pair-plasmas are important as and APEX experiments and operate them at NEPOMUC, the
world’s most intense moderated positron source.
e Unique research subjects in plasma physics C.Hugenschmidt et al., NJP 14, 55027 (2012)  psitron deceleration Dipole and Stellarator
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to exhibit unique properties, which are fundamentally
different from conventional ion-electron plasmas. These

. N . positron L) O
examples include remarkable wave and stability properties, beem (€508 BHCT
enhanced soliton behaviour, the lack of Faraday rotation, ot} L s
and strong nonlinear Landau damping effects. buffergastrap ~ accumulator  multi-cell trap
NEPOMUC positron accumulator (PAX) levitated dipole (APEX-D)

* Insight into astrophysics and scientific applications The grand scheme of the electron-positron plasma experiment

Electron-positron plasmas are believed to exist ubiquitously
In the environments of high-energy density objects, such as
pulsar magnetospheres and active galaxies. Also,
realization of a large number of stored positrons and stable
confinement of plasmas at any non-neutrality is a basis for

The PAX (Positron Accumulator eXperiment) consists of
a so-called Surko-type buffer gas trap and multi-cell trap
cells. Accumulation of 101°-12 positrons and fast injection of
them into APEX Is the purpose of the PAX.

Main results

e Positron moderation, buffer gas trapping, and accumulation
system from First Point Scientific was installed and operated.

e As important diagnostic tools, response of phosphor screens
against electrons and positrons were precisely compared.

e Confinement of electron plasmas for 1 hour and observation
of collective mode were realized in a Penning-Malmberg trap.

e Positron beam characterization was done at the open beam
port of NEPOMUC at various kinetic energies.

o With a prototype dipole trap with a permanent magnet, an
E X B drift injection scheme of positrons was developed.

Future plans

e Development of multi-cell trap, and accumulation and fast
extraction of a large number of positrons.

the formation of a large number of positronium (Ps) atoms APEX (A Positron Electron eXperiment) is a toroidal e Development of a superconducting levitated dipole trap.

and their Bose Einstein condensation (BEC), development magnetic trap for the simultaneous confinement of positrons o | | |

of an intense y-ray source, efficient antihydrogen atom and electrons as plasmas. We plan to start with a levitated e Efficient transport and simultaneous confinement of positrons
production, and formation of antihydrogen plasma and dipole experiment (APEX-D). A stellarator (APEX-S) is and electrons as a plasma in the levitated dipole trap.

further complicated matter-antimatter plasmas. another promising trapping geometry. T. Sunn Pedersen et al., New J. Phys. 14, 035010 (2012).

Target parameters High field trap experiments Positron system and diagnostics

Creation of electron-positron plasmas is a challenging Experiments with electron plasmas were conducted in a high-field trap Moderator, buifer gas, accumulator system was assembled, and positron beam
but realistic research goal (up to 2.3 T) to explore design parameters of the multi-cell trap was extracted and measured with phosphor screen

+ e- trapping in a Penning-Malmberg trap
e trapping time longer than 1 hour
« dependence on length, etc. measured

e To observe collective phenomena, the Debye length
Ap = \/kBTe/neez must be smaller than system size.

o Target: n,>~10"m3, T~1eV = A,<2cm + Evolution of m = 1 diocotron mode

« also used for diagnostics
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» Imaging with phosphor screen

Phosphor screen images of positrons *raw beam
| « e+ In buffer-gas trap
+ positon beam & » guiding efficiency will be improved
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R ASMasasssesanasann e Sansaaasannss e comparison with e- for the first time
Phosphor screen volizge (V) » direct measurements of e+ current

Phosphor screen response to e+ and e-
E.V. Stenson et al., to be published (2016).

Positron beam characterization at NEPOMUC  TakbyJ. stanja, P76 Efficient injection of positron beam into dipole field

Intensity, spatial profiles, and energy spreads (both parallel and perpendicular) of positron beams In a prototype supported dipole experiment, we employed ExXB drift and magnetic steering, and guided the
were measured at the open beam port of NEPOMUC positron beam of NEPOMUC with a high efficiency of 40% + Effective injection conditions were found

~1x108/s@ 1 keV

+ Toroidal rotation of positrons were confirmed
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Trapping of e+ In dipole Forthcoming experiments with SC coill

Positron confinement in the supported dipole experiment Development of SC dipole coils are ongoing toward the next positron beam

experiment at NEPOMUC in 2016

» fast switching of Ve to reduce error fields
) * Closed and unperturbed magnetic field

* order of ~1ms trapping is realized in strong field region SC coil excitation coils _ _ : _
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» SC coll current O -> I (flux conservation)

Field lines and strength (in T) generated by excitation coils and SC coil

Application of rotating wall

Trial of plasma compression in a toroidal geometry
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Teslameteri response drops due to tempefature change?!

5o far compression was not yet observed
e optimization of configurations is a future work

@ Coil #1: 20 A charging current
A Coil #2: 20 A charging current
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Bi-2223 SC tape winding (from NIFS) Cryocooler test in vacuum environment
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Time (minutes) » SC coil excitation was realized with N, cooling
Application of the rotating electric field (left, top views) and typical particle orbit Excitation of SC coil cooled with liquid nitrogen e Test with a CryOCOOIGr SyStem IS Ongoing

Design studies on SC levitated dipole

We are developing SC APEX-D, consisting of SC (BI-2223 HTS) coills,
cooling system, and feedback-controlled levitation system.
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Schematic of APEX-D levitated dipole Magnetic excitation and operation scheme of APEX-D

* Basic design is now fixed, and considerations on optimized parameters
and operation scenario are ongoing
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Stability analysis of vertical, slide, and tilt motions of a levitated SC coil Levitation of a permanent magnet

* Feedback circuit was developed and used for permanent magnet levitation



