The pair-plasma project of IPP*

How can we create symmetric closed field lines?

Development status of a levitated dipole experiment for pair-plasma production

Haruhiko Saitoh^{1,2}, Juliane Horn-Stanja¹, Eve V. Stenson¹, Uwe Hergenhahn¹, Thomas Sunn Pedersen^{1,3}, Markus Singer⁴, Matthew R. Stoneking⁵, Nagato Yanagi⁶

¹Max-Planck-Institut für Plasmaphysik, ²University of Tokyo, Japan, ³Ernst-Moritz-Arndt-Universität Greifswald, ⁴Technische Universität München, ⁵Lawrence University, USA, ⁶National Institute for Fusion Science, Japan

Motivation and objectives

- We aim to create the first magnetically-confined electron positron pair plasma in a laboratory using a dipole magnetic field configuration.
- In a mechanically supported prototype dipole experiment with a permanent magnet, operated at the NEPOMUC facility, efficient injection and trapping of positrons have been demonstrated (P13.1 Singer, P13.3 Horn-Stanja).
- In order to simultaneously trap positrons and electrons as plasmas, we plan to develop a superconducting levitated dipole experiment as one of next steps of the pair-plasma project.

Main results

- Cooling and inductive excitation of persistent current were demonstrated with a high-temperature superconducting (HTS) coil.
- Basic design concept of the levitated dipole (namely, compact dipole) trap with a thermal-contact cooled HTS coil) was decided.
- Feedback controlled levitation system was numerically investigated and compared with a small levitation experiment.
- A small HTS coil winding is ready for a forthcoming supported HTS coil experiments with positrons and electrons.

Overview of the project

Use of the NEPOMUC intense positron facility, buffer gas / multi-cell trap, and toroidal magnetic configuration(s) is the key issue.

Prototype dipole trap with a permanent magnet

Inside the prototype dipole

- Experiments with positrons are conducted with a supported dipole device.
- efficient ExB drift injection (up to ~100%)
- trapping of positrons (~ 20 ms)
- interaction with rotating wall (RW)
- electric fields in a dipole field

P13.1 Singer, P13.3 Horn-Stanja

• Need for the levitated dipole experiment

Permanent magnet dipole

- field lines intersect the magnet • confinement along field lines was done by electric fields and mirror trapping
- closed field lines positrons and electrons fly on the field lines without any perturbation

Levitated SC dipole

For simultaneous trapping of positrons and electrons as a plasma, we need closed field lines / magnetic surfaces, which are realized by a magnetically levitated superconducting coil (or stellarator).

• Other levitated dipole experiments

Recent experiments at RT-1 and LDX showed fluctuation-induced inward diffusion and excellent

RT1, example of levitated dipole confinement of plasmas.

Development steps

Compact levitated dipole for pair plasmas

• Basic concept and tentative parameters

• compact thermal contact cooling system for high-temperature SC coil • inductive excitation of SC coil with magnetically coupled another coil

	RT-1	LDX	APEX-D
SC tape	Bi-2223	Nb3Sn	Bi or ReBCO
Rcoil	250 mm	300 mm	75 mm
current	116 A	1820 A	100 A
turn	2160 turns	714 turns	300 turns
total current	250 kA	1400 kA	30 kA
operation temperature	20-30 K	4 K	20-50 K
coil weight	110 kg	580 kg	2 kg
cooling method	He gas	He	thermal contact
excitation method	direct (PCS)	induction	induction
thermal shield	coil	coil (He)	chamber

Parameters and comparison with other experiments

RT-1, Uni Tokio, Japan

LDX, MIT/Columbia, USA 2010 Boxer et al., Nature Phys. 6, 207

Levitation physics and engineering

- Equilibrium of coil position 2010 Yano et al., Fusion Eng. Design 85, 641.
- Geometry and governing equations

Stabilities for three motions

Feedback stabilization of the vertical motion Stability analy

ysis with transfer function	$G_1 = P + Ds + I^{\frac{1}{2}}$ PID circuit shown below
e chamber equation urce wall etc. of motion	<i>S</i>
	$G_2 = \frac{1}{1 + s/909}$ (A/V) power supply, 1.1 ms delay
laser position sensor	$G_3 = 1$ eddy current effects are negligible
detector	1 1 1 1

Including the flux conservation effects, two different current sets for the F and L coils are found for the levitation equilibrium. The former is suitable for plasma experiments.

Stability / field strength maps and several experiments

Vertical, slide, and tilt → stable motions can be unstable. According to the relative positions of F and L coils, we can chose a condition so that only 1-d vertical 0.10 0.05 0.00 0.15 0.20 Levitation test and comparison with stability analysis

Stability conditions are calculated with standard transfer function method.

Levitation control circuit was developed and stable levitation of a permanent magnet for hours were demonstrated.

Components of the levitated SC experiment

Cooling and excitation tests with Bi-2223 HTS tape windings

Liquid nitrogen cooling and inductive excitation

motion is unstable.

• New coil winding for supported SC coil experiment

stable

• Coil winding made at NIFS, Japan

DI-BSCCO 4mm tape A new spindle with

Floating (F) coil with 100A x 300 turns; Br_max = 0.54 T, Bz_max=0.73 T

Trapping geometry generated by F and L coils

Inductive excitation with a copper charging coil was demonstrated.

Generated persistent current values showed good agreement with values predicted from the conservation of magnetic flux inside the SC loop.

Cooling using cold head of a cryocooler

Cooling below Tc and transition to the SC state was realized only by applying enough contact pressure between the coil winding and the cold head.

large flange in order to enhance thermal contact.

• Cooling and excitation test with cooled copper plate (in air)

The winding was connected to an external power supply, and SC transition and excitation tests were conducted.

SC transition and excitation to I=50A was demonstrated with 77K plate.