Contribution submission to the conference Bremen 2017

Development status of a levitated dipole experiment for pair-plasma production — •HARUHIKO SAITOH¹, JULIANE HORN-STANJA¹, EVE V. STENSON¹, UWE HERGENHAHN¹, THOMAS SUNN PEDERSEN¹, MARKUS SINGER², MATTHEW R. STONEKING³, and NAGATO YANAGI⁴ — ¹Max-Planck-Institut für Plasmaphysik — ²Technische Universität München — ³Lawrence University, USA — ⁴National Institute for Fusion Science, Japan

Magnetic dipole is a simple and most common field configuration in the Universe, which generates a variety of plasma phenomena in a strongly inhomogeneous magnetic field. One of scientific applications of the dipole field is its usage as a trapping geometry for electronpositron pair-plasmas. For this purpose, we, the APEX (A Positron Electron Experiment) collaboration [1], is developing a compact levitated dipole device, APEX-D, to be operated at the NEPOMUC slow positron facility [2]. In order to minimize perturbations to plasmas, the superconducting dipole field coil (F coil, "F" for floating) of APEX-D will be magnetically levitated in a vacuum chamber. We plan to fabricate a Bi-2223 high-temperature superconducting (HTS) F coil that is magnetically levitated by using a feedback-controlled levitation coil (L coil), after inductive excitation of a persistent current in the F coil. We report design studies and status of development on the APEX-D project.

[1] T. Sunn Pedersen et al., New J. Physics 14, 035010 (2012).

[2] C. Hugenschmidt et al., New J. Physics 14, 055027 (2012).

Part:	Р
Туре:	Poster
Topic:	Magnetischer Einschluss;Magnetic
	Confinement
Email:	haruhiko.saitoh@ipp.mpg.de