5B-3 10 November 2022, 15:45-16:10 ITC31 Plasma Apparatus Unit

Introduction of "Plasma Apparatus" Unit 3: Creation and investigation of Antimatter Plasmas

H. Saitoh, Graduate School of Frontier Sciences, The University of Tokyo

"Antimatter plasma" project in Plasma Apparatus unit

- Plasma Apparatus on Confinement and control of charged particles
 - One of central topics in plasma fusion sciences
 - Fundamental technologies and research subjects in many areas

Creation of interdisciplinary research field, antimatter plasma physics*

* 2022 Higaki+ (electron-positron plasmas), Kuroda+ (anti-hydrogen), Nagata+ (positronium), J. Plasma Fusion Res. (in Japanese).

Antimatter studies realized by technologies of fusion sciences

- Scientific application of plasma apparatus technology
 - "Confinement difficulties" are common issues in many areas
 - Knowledges in fusion science can open new physics studies
 - Collaboration with recent progress in antimatter sciences

2005 Fajans+, PRL

Antihydrogen formation and non-neutral plasma confinement(ALPHA,ATRAP)

Cusp magnetic field trap to antihydrogen formation (ASACUSA)

Electron-positron plasma as primary research target

- Matter-antimatter pair-plasma
 - Unique wave and stability properties as pair-plasma $(m_{e^+}=m_{e^-})$

e+/e- plasma is common in space environment

Structure formation, instabilities, etc. around astrophysical objects

• Required large number of positrons is useful

Positronium (atom-like e+/e-) Bose-Einstein condensation, Coherent g-ray laser, toward more complex antimatters

Anti-hydrogen plasmas

CPT symmetry, gravity of antimatters, physical constants

4/14

State of the art of electron-positron plasma studies

- Theoretical ad numerical progress
 - Degenerated dispersion relation

Wave modes are simplified in pair-plasmas. No Faraday rotation, etc.

• Stabilities, shock, structures of space plasmas

Experimental works

- pair-ion (c60+-C60-)plasma
- hydrogen pair plasma (negative ion)
- electron-positron plasmas Mirror
 Dipole, Helical

Robust stable state prediction

Stability against temperature/density gradient

1978 Tsytovich&Wharton, Comm. Plasma Phys. Cntr. Fusion* 2014 Helander, Phys. Rev. Lett.**; 2017 Stenson, J. Plasma Phys.

> Works of "e-/e+ plasma" > 4000 (Web of Science 2022)

2003 Oohara&Hatakeyama PRL

2017 Oohara+ PoP

2020 Higaki+ App. Phys. Exp. 2020 Stoneking+ J. Plasma Phys.

Feasibility of electron-positron plasma experiments

• target: n_{e+/e-} >~10¹¹⁻¹² m⁻³, T_e~1eV

Debye length $\lambda_D \sim 2$ cm < exp. size, collective phenomena as plasmas

Life times of positrons and electron-positrons set by various processes

Expected lifetime, set by charge exchange, Ps formation, and pairannihilation, is much longer that the time scales of plasma phenomena

So why difficult to create e+/e- plasmas?

- In order to satisfy plasma conditions,
 - to accumulate more than 10⁹ positrons, and further
 - simultaneous trapping with electrons are needed

Slow positron source with isotope: up to $\sim 10^6$ e+/s

Intense source and injection methods

Linear trap for single-component plasma

Trapping of pair-plasma methods

- Recent breakthroughs in these areas
- 1. Stable confinement of plasma with arbitrary non-neutrality in levitated dipole

1987 Hasegawa Comm. Plasma Phys. Cnt. Fusion, 2004 Saitoh+ Phys. Rev. Lett., 2010 Yoshida, Saitoh+ Phys. Rev. Lett.

2. Progress in positron technologies, injection and accumulation in dipole

2015 Saitoh+ New J. Phys., 2018 Stenson+ Phys. Rev. Lett., 2018 Horn-Stanja+ Phys. Rev. Lett.

e+/e- plasma realization in levitated dipole with intense e+ source

Trapping configuration for electron-positron plasmas

Plasma studies in *artificial magnetosphere*

1987 Hasegawa, Comm Plasma Phys. Contr. Fusion

Globally equivalent to magnetospheres, generated by SC ring magnet

"Dipole Fusion" by Hasegawa

 $D-T \Rightarrow D-D$, $D^{-3}He$ etc.

RT-1 of U. Tokyo

Levitated dipoles with SC coils

2006 Yoshida+ Plasma Fusion Res.

• High-Tc SC technology

2013 Ogawa, Mito, Yanagi+ 低温工学

high-beta plasma

• non-neutral plasmas

2010 Boxer+ Nature Phys.

8/14

2022 Kenmochi, Nishiura+ Nuclear Fusion 2010 Yoshida+ Phys. Rev. Lett.

Trapping of non-neutral plasmas in levitated dipole

Pure electron plasmas confined for >300 s in RT-1

Pure magnetic (without E) toroidal system for particle trapping

Selective decay of turbulence and spontaneous creation of stable vortex structure that lasts for more than 300s.

2004 Saitoh+ Phys. Rev. Lett. 2010 Saitoh+ Phys. Plasmas

Structure formation in strongly inhomogeneous dipole is understood as a kind of diffusion

2018 Sato&Yoshida Phys. Rev. E

In principle, positrons are simultaneously in a same geometry of levitated dipole

Goal of Antimatter Group of the Plasma Apparatus unit ^{10/14}

Creation and investigation of "antimatter plasma physics"

 By combining Pulsed slow e+ beam and Compact levitated dipole, create plasma state (Ne~10¹¹⁻¹² m⁻³, Te<~1eV) of electron-positrons

╋

Linac + buffer gas trap Large number of e+ trapping Injection into dipole and Simultaneous trap with e-

Pair-plasma creation

Experimental study of collective phenomena of antimatter plasmas by

1. Emergence of collective phenomena of e-/e+ system as plasmas and investigation of degenerated dispersion relation and wave properties

2. Transport control and creation of plasmas with steep density gradient, in relation to stability of pair-plasmas that decide the plasma structure

3. Effects of instabilities on the transport and loss of pair-plasmas

Further application of large number of positrons to antimatter plasma physics

Wave propagation properties and control of radial profile

Collective phenomena as plasmas and study of dispersion relation

Detection of fluctuation modes with segmented electrodes

• Fluctuation mode number

12/14

Find new mode

Global mode in the toroidal geometry, instabilities

Mode coupling effects

Classical/turbulent transport properties

Rotating wall electric fields and typical motion (radial compression) of positrons

Stabilities and structure formation studies

Self-organization state of pair plasma in dipole field

- Image charges at segmented electrodes
- Applicable to non-neutral state plasmas
- Single-component plasmas
- Diagnostics for pair-plasma formation process
- Use of 511 keV annihilation signal
- Pair annihilation with residual neutral
- Target is used for a probe
- Tomographic density reconstruction
- Density gradient limit is different from conventional plasma?
- Instability decides the density gradient?

Pair plasma related physics research with e+/e- system

Summary of "antimatter plasma physics" activity

14/14

- Plasma conditions for electron-positron system is challenging
 - Accumulation of more than 10⁹ cold positrons
 - Simultaneous trapping with electrons with same number
- We solve these issues by fusion science-based Plasma Apparatus methods; Injection of intense pulsed positron beam into compact levitated dipole to realize plasma state with electrons, Ne~10¹¹⁻¹² m⁻³, Te<~1eV

 Comparison with other approaches (mirror, hydrogen), application to more complex antimatter plasmas and physics research

2017 Oohara+ PoP 2020 Higaki+ App. Phys. Exp.