Overview of the status of PAX/APEX pair-plasma project

H. Saitoh1,2, U. Hergenhahn1, J. Horn-Stanja1, S. Niß1,3, T. Sunn Pedersen1,4, E.V. Stenson1,3, M. Dickmann3, C. Hugenschmidt3, M. Singer3, M.R. Stoneking5, J.R. Danielson6, and C.M. Surko6

1Max-Planck Institute for Plasma Physics (IPP), Garching and Greifswald, Germany
2The University of Tokyo, Kashiwa, Japan
3Technische Universität München (TUM), Garching, Germany
4Ernst-Moritz-Arndt-Universität, Greifswald, Germany
5Lawrence University, Appleton, USA
6University of California, San Diego (UCSD), USA

Supported by ERC, DFG, Helmholtz Association, UCSD, and JSPS.
Work conducted at FRM-II, MLZ/TUM.

European Physical Society 45th Conference on Plasma Physics, July 2-6 2018, Prague
Overall plan of the PAX/APEX project to create e+/e-plasmas*:
NEPOMUC slow positron source** + accumulator*** + SC dipole/stellarator

NEutron-induced
POsitron source MUniCh

Fast neutron-based
slow positron facility

DC positron beam of
10^9/s at 1 keV, 10^7/s at 5 eV

Positron Accumulation eXperiment
- accumulation of many positrons
- buffer gas cooling & multi-cell trapping***
- pulse extraction of 10^{11-12} (target value) e+

A Positron-Electron eXperiment
- formation of e+ / e- pair-plasma
- dipole and stellarator
- cross-field injection of particles

PAX/APEX experiments and research topics

- **PAX (Greifswald and Garching)**
 IPP Garching, Greifswald University (L. Schweikhard)
 - First point scientific system
 - high field traps for e-/e+ experiments
 - positron accumulator system
 - cooling and injection of e+ (Na22) in a linear trap
 - phosphor screen responses to e+ and e-
 - e- experiments with high-field (5T) trap
 - buffer gas trap and multi-cell trap at NEPOMUC

- **APEX (TUM-MLZ / IPP Garching)**
 - Retarding field analyzer
 - prototype dipole trap (Neodym magnet)**

- **SC toroidal traps**
 - APEX-D levitated dipole****
 - closed field lines
 - levitation system
 - optimized SC magnet
 - cooling/excitation system
 - plasma experiments...

Notes:

Efficient injection of positrons into dipole magnetic field

- Positron injection efficiency is essential
 - beam ~ 10^7-8 e+/s, accumulator ~ 10^9
 - at least 10^9 positrons are needed in dipole

- Cross-field injection is not straightforward
 - drift injection across separatrix
 - beamline ~ 5 mT << magnet ~ 0.6 T

 ➡️ **ExB drift** by perpendicular electric fields*

- Loss is minimized by optimizing electrode voltages
 ➡️ **100% efficiency** of injection into dipole magnetic field

*another method: photo-ionization of Ps Rydberg atoms 2012 Pedersen+
Long trapping of positrons in a dipole magnetic field

J. Horn-Stanja+, submitted to PRL

- trapping time of positrons after drift-injected into the dipole field
- the trapping time strongly depends on system symmetry
 - by gating ExB plate voltages (0 at trapping): \(\tau \approx 0.1\text{ms} \rightarrow \approx 10\text{ms} \)
 - by gating other injection electrodes \(\rightarrow \tau \approx 100\text{ms} \)
 - by positively biasing the magnet to reduce mirror loss \(\rightarrow \approx 1\text{s} \)

- Field asymmetry due to the beamline field and magnetization direction of the magnet can be a loss reasons

![Trapping time with and without gating the ExB plate voltages](image1)

![Trapping with positively biasing and grounding the magnet](image2)
Radial compression of positrons in a dipole field by rotating wall

- high-density state is needed for positrons
- asymmetry is needed for radial transport
- "rotating wall" by segmented electrodes
- short time modulation

Compression and increased injection efficiency

- w/o RW injection efficiency was ~ 55% in this condition
- w/ RW almost 100% efficiency
Simultaneous injection of positrons and electrons into dipole

M. Singer+, to be submitted

- Using an electron gun installed in the beamline, electron injection was realized while keeping the 100% injection conditions for positrons.

- Electron injection sometimes results in reduced positron number to be studied with improved experiments in coming beamtime.
Development status of dipole experiments and tasks

Prototype trap with permanent magnet
- drift injection scheme
- positron trapping
- radial compression

Levitated SC dipole*
- simultaneous trapping of e+ and e-
- SC coils and levitation system
- planned to be operated before 2019

Mechanically supported SC dipole
- injection and trapping in symmetric system
- planned to be run in 2018 September beamtime

Summary and future work toward e+/e- pair plasmas

The PAX/APEX team aims to create and study magnetically-confined electron-positron pair plasmas in stellarator and levitated dipole devices.

Results obtained so far (today, mainly dipole activities were reported):

- e+ system from first point Inc. assembled and operated in IPP
- first observation of different phosphor screen response to e+ and e-
- trapping of electron plasma and diocotron mode of e- in high-field trap
- characterisation of e+ beam at the open beam port of NEPOMUC
- efficient (~100%) injection of intense slow e+ beam into dipole field
- long (> 1 s) confinement of positrons in the prototype trap
- shaping of radial profiles of positron orbits by RW electric fields

Ongoing and future work

- application of RW to control radial inward diffusion of positrons
- development of levitated SC dipole and compact SC stellarator
- development of positron accumulator at NEPOMUC