

Recent status of the PAX and APEX projects toward the formation of electron-positron plasma

U. Hergenhahn^a, H. Niemann^{ab}, N. Paschkowski^a, T. Sunn Pedersen^{ab}, <u>H. Saitoh</u>^{af}, J. Stanja^a, E. V. Stenson^a, M. R. Stoneking^{ac}, C. Hugenschmidt^d, C. Piochacz^d, S.Vohburger^d, G. H. Marx^b, L. Schweikhard^b, J. R. Danielson^e, and C. M. Surko^e

^a Max-Planck-Institute for Plasma Physics, Greifswald and Garching, Germany

- ^b Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
- ^c Lawrence University, Appleton, Wisconsin, USA
- ^d Technische Universität München, Garching, Germany
- e University of California, San Diego, USA
- ^{*f*} The University of Tokyo, Kashiwa, Japan

We aim to create magnetically-confined electron-positron plasma and experimentally investigate its unique properties as pair-plasmas

- Matter-antimatter plasmas are novel and unique research subjects¹
 - Pair-plasma consists of light and perfect equal-mass particles, m_{e-}=m_{e+}
 - Novel stability² and wave propagation properties³ are predicted
 - Potential contribution to understand astrophysical phenomena
- Very few experiments⁴ (no e+ e- plasmas in laboratories) so far⁵
 - Confined electron-positron plasmas have never been realized
 - Simultaneous trapping of e+ & e-: conventional non-neutral traps not applicable
 - Very strong positron source (and accumulator) is needed
 - 1. T. Sunn Pedersen et al., New J. Physics 14, 035010 (2012)
 - 2. P. Helander, Phys. Rev. Lett. 113, 135003 (2014)
 - 3. V. Tsytovich and C. B. Wharton, Comm. Plasma Phys. Cntr. Phys. 4 91 (1978)
 - 4. W. Oohara, D. Data, and R. Hatakeyama, Phys. Rev. Lett. 95, 175003 (2005)
 - 5. C. M. Surko and R.G. Greaves, Phys. Plasmas 11, 2333 (2004)

O-1 H. Saitoh *et al.*, **2**/12

Toroidal plasma traps and accumulator are planned for operation at NEPOMUC, the world strongest moderated positron source

- Toroidal magnetic configurations, instead of linear non-neutral plasma traps
 - applicable to the confinement of plasmas at any non-neutrality (no open ends)
 - stable trapping of electron plasmas was realized in CNT* and RT-1** (>300 s)

*T. Sunn Pedersen & A. H. Boozer, PRL 88, 205002 (2002)

***C.Hugenschmidt et al., New J. Physics 14, 55027 (2012)

***Z.Yoshida et al., PPCF 55, 014018 (2013)* P1-13 Nishiura, P1-14 Kawazura, O-8 Sato

- NEPOMUC positron source***
 - NEutron-induced POsitron source MUniCh
 - reactor (20MW) based source
 - moderated >109/s e+ at 1keV
 - further remoderated beam available

Target parameters to realize pair plasmas are a realistic goal: Charge-exchange neutral collisions would set the lifetime

• To observe collective phenomena, characteristic length of the system must be longer ($a > \sim 10\lambda_D$) than the Debye length $\lambda_D = \sqrt{k_B T_e / n_e e^2}$

Target parameters: $n_e > 10^{11} \text{m}^{-3}$, $T_e \sim 1 \text{eV} \implies \lambda_D < 2 \text{cm}$

*R. G. Greaves & C. M. Surko, in NNPP IV (2002) **S. Zhou et al., PRA 55, 361 (1997)

- For these parameters, lifetimes, set by several processes, are longer than time scales of plasma phenomena* **
- Here efficient injection and long trapping time are essentially important
 - total e+ number of $N > 10^9$ is needed
 - NEPOMUC beam intensity $\Gamma \sim 10^9 \, \text{/s}$

 $N = \alpha \tau \Gamma \qquad \alpha: \text{ injection efficiency} \\ \tau: \text{ confinement time (s)}$

• Use of accumulator, instead of steady injection scheme, may be a solution

Development of PAX accumulator and APEX confinement projects is ongoing in Greifswald and Garching

- Positron Accumulation eXperiment
 - accumulation of 10¹¹⁻¹² e+
 - bridge between NEPOMUC and APEX
 - cooled in buffer gas trap with N_2^*

• then e+ stored in multi-cell trap

*M. R. Natisin, J.R. Danielson,& C.M. Surko, PoP 22, 033501 (2015)

- A Positron-Electron eXperiment
 - simultaneous trapping of e+ and e-
 - toroidal magnetic configuration
 - we have started with dipole (APEX-D)

O-1 H. Saitoh et al., 5/12

Status of PAX/APEX development projects

- PAX (IPP Greifswald)
- First Point Scientific system
- high field trap and electrodes

cooling and accumulation of e+ (Na²²)
 phosphor screen responses to e+ and e e- experiments with high-field (5T) trap
 development of multi-cell trap

- SC toroidal traps
- APEX-D and APEX-S
- closed field lines
- now design phase

levitation system optimized SC magnet

- □ cooling/excitation system
- plasma experiments...

SC coils from NIFS

O-1 H. Saitoh et al., 6/12

• APEX (NEPOMUC Hall / IPP Garching)

- Retarding Field Analyzer
- prototype dipole trap

beam energy profiles measurements
 injection (drift, Ps) development
 design of SC dipole/stellarator

Moderator, buffer gas, accumulator system was assembled, and positron beam was extracted and measured with phosphor screen

Phosphor screen images of positrons

Phosphor screen response to e+ and e-

* E.V. Stenson et al., to be published (2015)

- e+ beam extraction (with Na²²)
 - commissioning of neon moderator
 - moderation (energy spread: some eV)
- Imaging with phosphor screen
 - raw beam
 - e+ in buffer-gas trap
 - guiding efficiency will be improved
- Phosphor screen response to e+
 - previously, no clear studies done
 - comparison with e- for the first time
 - direct measurements of e+ current

O-1 H. Saitoh et al., 7/12

Experiments with electron plasma were conducted in high-field trap (up to 5T) to explore design parameters of multi-cell trap

- e- confinement in Penning-Malmberg trap
 - trapping time longer than 1 hour
 - dependence on length, etc.
- Evolution of m=1 diocotron mode
 - also used for diagnostics
 - frequency corresponds to $\sim 10^9 \text{ e-}$

* H. Niemann, U. Hergenhahn, et al.

O-1 H. Saitoh et al., 8/12

Intensity, spatial profiles, and energy spreads of positron beam were measured at the open beam port of NEPOMUC

- Spatial profile measurements
 - MCP + phosphor camera image
 - movable targets + BGO scintillator-PMTs
- RFA with variable field strength
 - both parallel and perpendicular energies
 - important parameters for buffer-gas trapping
- Measurements done for several conditions

* J. Stanja et al., to be published (2015)

O-1 H. Saitoh et al., 9/12

Prototype dipole field trap with a permanent magnet was operated at NEPOMUC for proof-of-principle experiments on injection and trapping

- A permanent magnet device with...
 - ExB and shield plates, steering coils
 - magnet and outer wall electrodes (E_r)
- ExB drift injection was numerically optimized
- Diagnostics
 - BGO scintillator-PMTs to detect 511 keV γ-rays
 - target probe + current amplifier

O-1 H. Saitoh *et al.*, **10**/12

Efficient injection (~ 38%) and relatively long confinement (~ 5ms) of positrons were realized at NEPOMUC

Detection of 511keV γ in the confinement region

- ExB drift injection of NEPOMUC beam
 - steering, ExB bias, E_r optimization
- injection and 180° rotation confirmed
- Confinement
- order of ~1ms in strong field region
- improvement is expected in SC dipole

O-1 H. Saitoh et al., **11**/12

Summary and future work

- The PAX/APEX collaboration is conducting development research aimed at the creation and experimental study of electron-positron pair-plasmas
- Present status and results obtained so far:
 - moderator, buffer gas trap, and accumulator systems were assembled
 - trapping of e+ in buffer-gas trap and beam imaging by phosphor screen
 - long trapping and diagnostics with diocotron mode of e- in high-field trap
 - basic e+ beam properties at open beam port of NEPOMUC obtained
 - efficient (~38%) injection of intense 5eV e+ beam into dipole field
 - relatively long (~5ms) confinement in the prototype trap
- Future work
 - application of rotating wall to control radial transport of particles
 - development of more efficient injection schemes (remoderator, Ps)
 - further development: levitated SC dipole / stellarator and multi-cell trap

Backup Slides

Background

Unique properties of electron-positron pair-plasma

- "perfect" equal-mass and light mass (high frequency mode)
- absence of several modes: Faraday rotation, drift and sound waves
- unique stability properties*

FIG. 1. Stability diagram of an electron-positron plasma in a dipole magnetic field. Regions *A* and *B* are stable to electrostatic modes, while regions *B* and *D* are unstable to MHD interchanges.

* P. Helander, Phys. Rev. Lett. 113, 135003 (2014)

electrostatic stability condition

$$\frac{d\ln(n/T)}{d\ln\psi} < \frac{4}{3} \qquad \text{(A and B)}$$

MHD modes are unstable when

$$\frac{d(pU^{5/3})}{d\ln\psi} > 0 \Rightarrow \frac{d\ln(nT)}{d\ln\psi} > \frac{20}{3} \quad (\text{B and D})$$

We plan to use toroidal configurations that enable simultaneous trapping of positrons and electrons as plasmas

- Linear configurations:
 - Plugging electric fields are required along magnetic field lines
 - Positively and negatively charged particles are not simultaneously trapped in a finite region as a plasma
- Toroidal configurations without using plasma currents
 - Applicable to the confinement of plasmas at any non-neutrality
 - Stable trap of electron plasma has been realized in CNT* and RT-1**

*P. W. Brenner and T. Sunn Pedersen, PoP **19**, 050701 (2012).

**Z. Yoshida et al., PPCF 55, 014018 (2013).

Previous work on pure electron plasma in RT-1, which clearly showed injection, trap, and collective phenomena of charged particles in dipole

- Plasma is transported inward during turbulent-like phase, then rigidrotating state is spontaneously generated after stabilization
- Z. Yoshida et al., Plasma Phys. Cntr. Fusion 55, 014018 (2013).

Magnetic dipole as one of APEX configurations, where effective inward transport and self-organization of plasmas are realized

- Most simple and ubiquitous configuration in laboratory and the Universe
- Closed and axis-symmetric field lines without plasma current
- Inward transport of neutral and non-neutral plasmas has been observed in planetary magnetospheres and experiments, RT-1* and LDX**

*2010 Yoshida *et al.*, Phys.Rev.Lett. 104, 235004; 2009 Ogawa *et al.*, Plasma Fusion Res. 4, 020. *2010 Boxer *et al.*, Nature Phys.Rev.Lett. 6, 207.

Required parameters

Development of efficient injection scheme into toroidal configurations is essential for the trapping of positrons as plasma

Target parameters: $n_e > 10^{11-12} \text{ m}^{-3}$, $T_e \sim 1 \text{ eV}$ $\lambda_D < \text{ system size}$

 Assuming that the volume of confinement region V ~ 10L, we need to trap at very least N ~ 10⁹ positrons

• For steady-state filling-up, we have $N = \alpha \tau \Gamma$, where

α: injection efficiency τ: confinement time (s) Γ: beam intensity (/s) ~ 10^9 at NEPOMUC

We need to realize

- Very long (more than 1s) confinement time
- Very efficient (close to 100%) injection into closed toroidal geometries

Injection scheme is also important when injecting from multi-cell trap

Life time of electron-positron plasmas

- pair annihilation (e+ + e- -> 2g) $\Gamma = \pi r_0^2 c n_e$
- Ps formation (2e- + e+ -> Ps* + e- : three body, etc.) $\Gamma_{Ps} \simeq Anb^2 v_{th}(nb^3)$
- classical neutral collision (annihilation) $\Gamma = \pi r_0^2 c n_n Z_{eff}$
- charge exchange neutral collision (e+ + H -> Ps +H+) : would be dominant

Instruments and Diagnostics

APEX experiments installed at the open beam port of NEPOMUC (13 + 9 days of beamtimes in 2014 and 2015)

- Particle numbers and diameters of positron beams
- Parallel and perpendicular energy distributions of beams
- Injection, trap, and loss properties in a dipole field

Construction of each of the components of dipole experiment

External and internal views of the prototype dipole field trap

trapping region

TMP

CF-DN200 (10") 6-way, 1.8e-7 Pa

outer electrode (8-segmented)

neodymium magnet ~ 0.6T (inside copper case)

Numerical considerations on injection with external electric field 2: Rotating electric field coupled with dipole magnetic field

- Rotating E is applied in the azimuthal direction
- RW freq. is synchronized with grad-B/curvature drift frequency
- Effects of Er will also be investigated

Transverse energy spread measurements of NEPOMUC beam

$$\begin{split} E_{\parallel f} &= E_{\parallel i} + \left(1 - \frac{B_f}{B_i}\right) E_{\perp i} \\ \langle E_{\perp i} \rangle &= -\frac{d\langle E_{\parallel f} \rangle}{d\alpha} \qquad \alpha := B_f / B_i \end{split}$$

* S. Pastuszka et al., J. Appl. Phys. 88, 6788 (2000), for example.

* J. Stanja et al., to be published (2015)

Direct positron current measurement with charge amplifier

20eV beam, 4s/div, 5mV/div

Positron current was integrated by a charge amplifier, giving intensity of beam intensity;

Total injection beam flux was 2.2e7/s at 5 eV

Injection scheme

Injection investigation by orbit analysis with SIMION

- single orbit analysis with different V_{ExB}
- \bullet injection is realized with wide V_{ExB} range
- \bullet finite v_{perp} is important for mirror trapping
- shield plate reduces error field, realizing long orbits in the trapping region
 - * H.Saitoh et al., New J. Physics 17, 103038 (2015)

Electrostatic shield plate was installed in order to reduce error field between the ExB plates and (mainly) outer electrode

Loss on outer electrode

511 keV signals at target and magnet show evidence for injection and at least 180° toroidal rotation of NEPOMUC beam in a dipole field

steering coil currents: beam injection position

- V_{ExB}: formation of appropriate drift motion
- E_r: balancing grad-B/curvature and ExB drifts

Important control parameters are

Injection efficiency was evaluated by direct measurements of positron current at insertable probe and target probe

By reducing error electric field in trapping phase after injection phase, relatively long confinement (~ 1 ms) was observed

- beam was injected steadily (left) or turned off after injection (right)
- decay with two time constants, suggesting trapped and untrapped particles
- longer confinement times in stronger field region

Electron Exp.

Setup of the prototype device for pure electron plasma experiments and operation (injection-trap-dump) scheme

Injection, trap, and dump cycle

 $B \sim 100-5 \text{ mT}$ in the confinement region

Field lines intersect the permanent magnet

Remaining charge after stopping electron injection: Initial results on confinement of electrons in a dipole trap

- Electrons were injected into negative potential well
- Dumped charge corresponds to $3x10^7$ electrons, decay time $\tau \sim 200$ ms
- Precise measurement (including dependencies of τ etc.) will be done by using fixed current probe*

*P. W. Brenner and T. Sunn Pedersen, PhysPlasmas 19, 050701 (2012).

Levitated dipole

Magnet stability analysis for proposed parameters: Levitation control reduces to one dimensional stability problem

- Magnet motion is simplified to a one-dimensional vertical stability problem
- Based on these basic analysis, design studies are ongoing

The stability condition of the levitation system is analyzed by a transfer function method

the characteristic function of the system is given by

$$a_0s^4 + a_1s^3 + a_2s^2 + a_3s + a_4 = 0,$$

The proposed levitation system has a wide range of stability regions for P and D component of the feedback-controlled circuit

Construction Plan for SC APEX-D: Levitated operation of magnet is needed for the creation of dipole pair plasmas

- Closed and unperturbed magnetic field lines, which cannot be realized with a permanent magnet, are required for simultaneous confinement
- This is achieved by a levitated dipole; We started design studies

Levitation test experiment

A permanent magnet was levitated using a feedback-controlled system