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Motivation to create and study electron-positron pair-plasmas?

» Matter-antimatter plasma experiment; new research subjects?3

« Unique stability* and wave propagation properties (e.g. no Faraday rotation)

* Application to astrophysical phenomena in pulsars and active galaxies

* Advantages of electron-positron pair plasma

» Strongly magnetized plasmas are expected : m,=mgg,/2.2%x10°
» Perfectly equal-mass particles: m,=m_,=9.10938291x10-31kg

* Precise measurements by using annihilation ys, loss channels etc.

However, very few experiments so far: source and trap problems...

1 T. Sunn Pedersen, J. R. Danielson, C. Hugenschmidt et al, NJP 14, 035010 (2012).
2. V. Tsytovich and C. B. Wharton, Comm. Plasma Phys. Cntr. Phys. 4 91 (1978).

3. C. M. Surko and R.G. Greaves, Phys. Plasmas 11, 2333 (2004).

4. P. Helander, Phys. Rev. Lett. 113, 135003 (2014).



In the project*, APEX focuses on the confinement of positrons and
electrons as plasmas in toroidal geometries

NEPOMUC positron source**
+* FRM Il @ TUM, Garching (20MW reactor)
+ DC positron ~10°/s by using prompt ys
+ East Hall is under construction ~2018

A.) high-intensity © ——

positron beam | B.) buffer gas trap C.) accumulator

[ —] ——————————— = | E.) toroidal magnetic surfaces
Talk of Eve Stenson , L, l

Positron Accumulation eXperiment A Positron Electron eXperiment

PAX positron accumulator [ APEX Toroidal trap

» Buffer gas trap + multi-cell type trap * Confinement of e+ and e-
+ target parameter; cold 101-12 e* accumulation * Stellarator and Dipole

*T. Sunn Pedersen et al, NJP 14, 035010 (2012). **C. Hugenschmidt et al, NJP 14, 055027 (2012).



The use of toroidal configurations enable the simultaneous trapping
of positrons and electrons as plasmas

* Linear configurations:

 Plugging electric fields are required along magnetic field lines

= Positively and negatively charged particles are not simultaneously
trapped in a finite region as a plasma

+ Toroidal configurations for non-neutral plasmas

 Applicable to the confinement of plasmas at any non-neutrality
« Stable trap of electron plasma has been realized in CNT* and RT-1**
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*P. W. Brenner and T. Sunn Pedersen, PoP 19, 050701 (2012). **Z. Yoshida et al., PPCF 55, 014018 (2013). >



Target parameters of APEX to realize pair plasmas as a realistic goal:
Life time vs. charge exchange collisions, Ps formation, annihilation, etc.

* To observe collective phenomena, scale length of the system must be
larger (a > ~101,) than the Debye length A, = \/kgT,/n.e?

Target parameters: n,~10%m=3, T.~1eV = A,~1cm

* For these parameters, lifetimes are long enough, i.e., we can expect
to observe plasma phenomena
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Magnetic dipole as one of APEX configurations, where effective
Inward transport and self-organization of plasmas are realized

constant peaked profile

| [ |
"phase space" coordinate "real space" coordinate Z. Yoshida et aI., PPCF 55, 014018 (2013)-

* Inward transport of neutral and non-neutral plasmas has been observed
In planetary magnetospheres and experiments, RT-1 and LDX

* Development of particle injection schemes is one of key issues

* By using external electric fields (proof of principle studies with electrons)

By using positronium re-emission process on metals/crystals*
positrons -> Ps -> photo-ionized in trap region

*D. B. Cassidy et al., Phys. Rev. Lett. 106, 133401 (2011); T. S. Pedersen et al., (2012).



Previous work on pure electron plasmain RT-1, which clearly showed
Injection, trap, and collective phenomena of charged particles in dipole

«— beam injectiont=0-0.1s
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* Plasma is transported inward during turbulent-like phase, then rigid-
rotating state is spontaneously generated after stabilization

Z. Yoshida et al., Plasma Phys. Cntr. Fusion 55, 014018 (2013).



Numerical considerations on injection with external electric field 1:
ExB drift toward strong field region across field lines
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+ E X B drift motion is induced by a local crossed electric field
* High injection efficiency when the permanent magnet is biased
* More detailed analysis in real configurations is going on



Numerical considerations on injection with external electric field 2:
Rotating electric field coupled with dipole magnetic field

+ Rotating E is applied in the azimuthal direction
+* RW freq. is synchronized with grad-B/curvature drift frequency
+ Effects of Er will also be investigated
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Development steps of the APEX-D project:
Prototype experiment and superconducting levitated experiment

\_

Proof-of-principle experiment in a
permanent magnet device, 2013-

« Efficient injection method development by

drift injection with external electric fields

» Confinement and precise measurements

by using both electron and positron beams
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Pair plasma formation in
APEX-D SC Levitated Dipole

* Closed and unperturbed field lines

« Simultaneous confinement of positrons
and electrons and understanding of their
properties as final goals

~
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Prior to SC APEX-D, we have constructed a prototype device with a
permanent neodymium magnet for proof-of-principle experiments

Beamline field of NEPOMUC
injection 1 (vertical)
S

ExB plate _ o
Particles must be injected

. across closed field lines!

injection 2
(tangential)

" To be installed in December!
segmented electrodes

Nal detector \
arde ecor | . (rotating wall)

PHA support rod/ /" permanent magnet
bias cable

Development and understanding of essential issues for SC APEX-D

+ [njection of charged particles by using external electric fields
ExB drift injection, rotating wall technique, remoderation by using W crystal

* Confinement properties of both electrons and positrons
12



Setup of the prototype device for pure electron plasma experiments
and operation (injection-trap-dump) scheme

Outer electrode ExB injector
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Injection, trap, and dump cycle
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External view and inside the vacuum chamber
of the prototype device

ExB electron injector Outer electrode

TMP
Neodymium magnet
CF-DN200 6-way, 1.8e-7 Pa (inside copper case)

14



Increase of current arriving at magnet case from electron gun,
due to electron transport across field lines

* A part of electrons are guided to

strong field region
ExB electron

Injector * Increase in magnet case current

by the use of ExB plates
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Remaining charge after stopping electron injection:
Initial results on confinement of electrons in a dipole trap
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Vmag was changed from -20V to OV.

 Electrons were injected into negative potential well
« Dumped charge corresponds to 3x10’ electrons, decay time t ~ 200ms

* Precise measurement (including dependencies of t etc.) will be done
by using fixed current probe*

16
*P. W. Brenner and T. Sunn Pedersen, PhysPlasmas 19, 050701 (2012).



First trial to create toroidal positron plasma at NEPOMUC will be
conducted from this December

Open Beam Port at NEPOMUC*

* FRM Il @Technical University Munich (20 MW neutron source reactor)
¢ DC moderated beams, 10°/s at 1 keV, 107 /s at 20 eV
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Positrons are generated by pair production from absorption of high-
energy prompt gamma-rays after thermal neutron capture in Cd

: 17
*C. Hugenschmidt et al, NJP 14, 055027 (2012).



Planned experiments at NEPOMUC
In the forthcoming beamtimes in Dec. 2014 and Jan. 2015)

+ Particle numbers and diameters of positron beams
+ Parallel and perpendicular energy distributions of beams
+ |[njection, trap, and loss properties in a dipole field
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Construction Plan for SC APEX-D: Levitated operation of magnet is
needed for the creation of dipole pair plasmas

feedback
control
system

power

source

magnet t laser
lift system ok
- - levitation magnet
& \\\\\ ‘ //j_‘h
/ // Levitation and
\ <<<< \ ))))>>>>> experiment
RN ~—= . o position
HTS magnet
charging 3 Cooling and excitation/
coil /x ] I discharge position
cold plate ' 2nd stage 20K
cassette
- 1st stage 80K

80K
radiation shield

(liquid nitrogen)

L Cryocooler

LDX RT-1 Mini-RT SC APEX-D
SC magnet |Nb3Sn Bi-2223 Bi-2223 Bi-2223

40 cm 25cm 15cm 10cm

1820 A 116 A 117 A 100 A

714 turn 2160 turn 430 turn 500 turn

1300 kA 250 kA 50 kA 50 kKA

4.5-10K 20-30K 20-40K 20-50K

5 hours 8 hours 3 hours > 3 hours

580 kg 110 kg 20 kg 10 kg
Cooling He cooling [Cryocooler |Cryocooler |Cryocooler

(125 atm He)|and He gas |and He gas |[thrm. contact
Excitation [inductive direct, PCS |[direct, PCS |inductive
Shield coil case coil case coil case chamber
Heat input [< 1W 0.9W < 0.2W <0.1W

» Closed and unperturbed magnetic field lines, which cannot be realized
with a permanent magnet, are required for simultaneous confinement

* This is achieved by a levitated dipole; We started design studies
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Magnet stability analysis for proposed parameters:
Levitation control reduces to one dimensional stability problem
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* Magnet motion is simplified to a one-dimensional vertical stability problem
+ Based on these basic analysis, design studies are ongoing 20



Summary of the APEX status and future works

» Aiming for the first creation and study of electron-positron pair-plasmas,
we are developing a toroidal trap APEX (Stellarator and Dipole)

* Development of efficient injection methods and understanding of the trap
properties of non-neutral plasmas are key issues

« By using drift (ExB) method, injection and relatively short (~100 ms) trap
of electrons were confirmed in a prototype device with a permanent magnet

* Properties of charged particles in dipole field will be further investigated
In the forthcoming positron beam experiments at NEPOMUC

» Based on these proof-of-principle experiments, we started the design of
a SC APEX-D, where dipole field is magnetically levitated
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