Injection and trapping of electrons in a dipole magnetic field: towards the formation of an electron-positron plasma

H. Saitoh^{1,3}, T. S. Pedersen¹, U. Hergenhahn¹, E. V. Stenson¹, J. Stanja¹, N. Paschkowski¹, and C. Hugenschmidt² ¹ Max Planck Institute for Plasma Physics, Germany, ² Technical University Munich, Germany, ³ The University of Tokyo, Japan

Motivation and the PAX/APEX project*

Electron-positron mixture as a pair-plasma

- Matter-antimatter plasma experiment; new research subjects
- Unique plasma properties on stability, wave propagation (e.g. no Faraday rotation)
- Application to astrophysical phenomena in pulsars and active galaxies
- Very few experiments so far problems on particle source, confinement
- Advantages of electron-positron pair plasma
- Quick response to external electric and magnetic fields ($m_e = m_{C60}/2.2 \times 10^5$) → Suitable for studies of waves in both high- and low- frequency ranges
- "Perfectly" equal-mass particles (m_{e-}=m_{e+}=9.10938291×10⁻³¹kg)
- → No effects of remaining small mass unbalance
- Precise measurements by using annihilation γ rays Detailed understanding of general properties of toroidal non-neutral plasmas

The project

- Buffer gas trap + multi-cell type trap
- target parameter: cold 10¹² e⁺ accumulation

APEX Toroidal trap Confinement of e+ and e-Stellarator or Dipole

• APEX: toroidal confinement concept

Toroidal confinement of particles

- Linear configurations:
- Plugging electric field along magnetic field lines
- Suitable for the confinement of single-component non-neutral plasmas
- Positively and negatively charged particles are not simultaneously trapped in a finite region as a plasma
- Toroidal configurations for non-neutral plasmas
- Stable trapping of pure electron plasma has been realized in CNT and RT-1 • Applicable to the confinement of plasmas at any non-neutrality

P. W. Brenner and T. S. Pedersen, Phys. Plasmas 19, 050701 (2012).

Z. Yoshida et al., Plasma Phys. Cntr. Fusion 55, 014018 (2013).

Particle injection schemes

 By using positronium re-emission process on solid materials*** positrons are converted into positronium atoms and freely transported into the confinement region, then photo-ionized using lasers

Drift injection by using external electric fields (to be started with electrons)

Dipole trap for APEX and target parameters

Proof-of-principle experiment with a permanent magnet device 2014 1Q- Small trap with a neodymium dipole magnet Confinement and injection properties

- Electron beam exp.
- Efficient injection method development with drift injection with external electric fields
- Positron beam exp.
- Drift injection and γ detection with PHA

Target parameters and expected life times

Prototype APEX trap and drift injection schemes

Compact dipole device with a permanent magnet

Schematic of the experiment, including the supported neodymium magnet, E × B plates for vertical injection, rotating wall for tangential injection, and diagnostics.

Drift injection schemes

(left) Typical positron orbit projected onto the *r*-*z* cross section when electric field is applied (solid line) and not applied (dot line). Electric field of $\mathbf{E} = 1 \times 10^3$ V/m was applied in the marked region from t=0 to 0.1ms.

(right) Ratios of remaining positrons after injection without E (dot line), with the application of E (solid line), and when the magnet was also biased (chain line)

Injection method 2: tangential injection (to be installed)

- Rotating **E** is applied in the azimuthal direction • RW freq. is synchronized with grad-B/curvature drift freq. Efficiency will be tested in a real system

APEX Levitated dipole 2015-

- Superconducting dipole field magnet
- Closed and unperturbed field lines
- Long confinement of e+
- Simultaneous confinement of e- and e+
- Excitation and detection of waves Dispersion relation measurements
- To observe collective phenomena, scale length must be larger ($a > \sim 10\lambda_D$) than the Debye length $\lambda_D = \sqrt{k_B T_e / n_e e^2}$
- Target parameters: $n_e \sim 10^{12} \text{m}^{-3}$, $T_e \sim 1 \text{eV} \Rightarrow \lambda_D \sim 1 \text{cm}$
- For trap volume $V \sim 10^{-2}$ m⁻³ and DC beam, required confinement time is ~ 10 s; rather hard target \rightarrow importance of PAX
- In these parameters, loss channels are expected to be small (Plasma effects; instabilities, turbulence, etc. are not considered here)

Small energy spread is important for efficient confinement in a trap system

- (left) Schematic view of a rotating wall and equipotential contours generated by the segmented electrodes.
- (right) Typical positron orbits with (dot line) and without (solid line) the application of synchronized rotating wall.

*T. S. Pedersen *et al*, NJP **14**, 035010 (2012). **C. Hugenschmidt et al, NJP 14, 055027 (2012). ***D. B. Cassidy *et al.*, Phys. Rev. Lett. **106**, 133401 (2011).

Proof of principle experiment in Proto-APEX

Drift Injection of electrons

Electrons are effectively guided into the confinement region by using external electric field.

Diagnostics and initial results

- Fixed current probe
- Electron emitting filament located just outside the confinement region
- Emission current (~10 nA) is controlled by external circuit
- Plasma potential is estimated according to the filament voltage

Future works

Superconducting levitated dipole trap

ExB separation of

41st EPS Conference on Plasma Physics, P4.119, 26 June 2014, Berlin

magnet

Electron injection into a dipole field generated by a permanent magnet

• Electron dump onto the magnet

1.0 _ <u>I_cathode</u> magnet bias voltage negative, -10V capacitance ef magnet current ປ**້ອງຈະກະສະກະລະກະສະຫຼະຫຼາຍເ**

energy

- During/after injection, electrons are dumped onto magnet along field lines.
- So far good S/N level is not realized

		RT-1	Mini-RT	LDX	APEX dipole
	SC material	Bi-2223	Bi-2223	Nb3Sn	Bi or Y
	magnet major radius	250 mm	150 mm	300 mm	100 mm
net	coil current	116 A	117 A	1820 A	100 A
	turn	2160 turn	430 turn	714 turn	500 turn
	total current	250 kA	50 kA	1300 kA	50 kA
ation and	operation temperature	20-30 K	20-40 K	4 K	20-40 K
eriment ition	coil weight	110 kg	20 kg	580 kg	10 kg
	Coil cooling	He gas	He das	He coolina	conduction
	excitation	direct	direct	induction	induction
	thermal shield	coil	coil	coil (He)	chamber
					Smagnet
	itron bo				S magnet
pos	itron bea	ams	J. Stanj	a, T. S. Pe	S magnet
	itron bea	Initial bea	J. Stanj am with relatergy spread	a, T. S. Pe	S magnet

- Small energy spread is important for efficient confinement in a trap system
- This may be realized by two sets of ExB drift plates