

Trapping properties of magnetic-dipole fields

H. Saitoh¹, T. S. Pedersen¹, U. Hergenhahn¹, E. V. Stenson¹, N. Paschkowski¹, C. Hugenschmidt², and the PAX/APEX team

1 Max Planck Institute for Plasma Physics, Greifswald and Garching, Germany 2 FRM-II and Physics Department, Technical University Munich, Garching, Germany

Dipole magnetic field is the most simple and ubiquitously 2/20 observed field in the Universe

 Good approximation of many objects; pulsars, magnetospheres (Jupiter, earth) Numerical Simulation of flowing high- β plasma in the Jovian Magnetosphere J. Shiraishi, Z. Yoshida *et al.*, Phys. Plasmas **12**, 092901 (2005).

1987 Hasegawa., Comm. Plasma Phys. Fusion **1**, 147. 2002 Yoshida and Mahajan, PRL **88**, 095001.

 β = Plasma pressure / magnetic pressure

- Space craft observations of magnetosphere of Jupiter
 - High- β (β >100%) flowing plasma
 - Stable against several instabilities (compressibility of field lines)
- Physics of dipole plasmas: Self-organization, inward "diffusion" etc.

There has been a renewed interest in laboratory studies3/20on dipole plasmas: by using superconducting levitated coils

 Dates back to early fusion studies with Spherators and multi-pole traps 1971 Freeman *et al.*, PRL **26**, 356.

(averaged) Min-B concept: still working in fusion studies

 Recently, RT-1 (Tokyo) and LDX (MIT/Columbia) were constructed, by taking a hint from the Jovian magnetosphpere

2006 Garnier*et al.*, Phys. Plasmas **13**, 056111.

• Scientific applications: advanced fusion, matter-antimatter plasmas

Outline

- Properties of particle motion in the dipole field
 - Conservation of adiabatic invariants and its breakdown

Stable confinement \iff efficient inward transport

- Advantages for trapping e-p plasmas: axi-symmetric totoidal configuration
- Recent results on dipole non-neutral (pure electron) plasmas
 - Long time confinement and its properties
 - Spatial profiles and conditions for good confinement
- Application to electron-positron plasmas in a dipole field
 - Planned small experiments with superconducting magnet
 - Experiments on superconducting dipole field trap

Characteristics of dipole field trap and its advantages for the confinement of plasmas

Comparison of linear and dipole traps

- Toroidal configuration enables confinement of plasmas at arbitrary non-neutrality
- In an axi-symmetric trap, canonical angular momentum of a charged particle is well conserved.

5/20

- Good confinement is expected
- Injection methods (breakdown of invariants) are key issues

Poincaré plots of positron orbit in a dipole field: Motions are not always integrable !

Confinement of plasmas in a dipole field is realized through the conservation of adiabatic invariants

- Charged particle motions in an axi-symmetric dipole field:
 When three adiabatic invariants are conserved, motions are integrable
 - magnetic moment $\mu = v_{\perp}^2/B$
 - action integral
 - magnetic flux
- $J = \int v_{\prime\prime} ds$ $\Psi = \int B dS \sim P_{\theta}$

periodic motions gyromotion bounce along field lines toroidal drift motion

Canonical angular momentum

- When the system is quiescent, charged particles are trapped on magnetic surfaces due to symmetry
- Stable confinement is expected for plasmas at any non-neutrality, and for high-energy particles

Radial transport of particles are realized by breaking the 7/20 conservations of adiabatic invariants

- μ and J are not conserved when charged particles are not magnetized
- When the system is not axially symmetric, Ψ is not conserved
- Temporally changing fields can also destroy the conservations of invariants

 $\tau_{gyro} < \tau_{bounce} < \tau_{drift}$ \Rightarrow Even slow fluctuations can easily destroy Ψ

Conservation of invariants

Particles trapped on magnetic surfaces stable confinement due to symmetry

Breakdown of invariants (Ψ)
 Diffusion across magnetic surfaces
 Profile reconstruction (relaxation)

Two experiments had been conducted by using supported and levitated dipole field trap

Proto-RT (1998-2005) supported coil

Potential control by using torus electrodes

Superconducting Ring Trap 1 (RT-1) (2006-)

8/20

Magnet levitated Minimizing perturbations

Formation phase: plasma has large turbulent-like fluctuations 9/20 during beam injection, which are stabilized after the end of beam supply

- The electron gun was operated from t=0 to 0.1s.
- Plasma has turbulent-like fluctuation component in injection phase, and is stabilized after the end of beam injection.

Stable confinement of PEP for more than 300s is realized,10/20trap time comparable to the diffusion time due to neutral collisions

- Long confinement is realized by the magnet levitation
- Instability does not grow, until the end of confinement

 The nonlinear relation
 (τ*P_n≠const.) indicates that
 electron-neutral collisions do
 not simply decide the trap time
 of PEP.

Density profiles: Pinch toward strong field region 11/20 estimated by using a wall probe array in stable confinement phase

- Radial transport to strong field region is realized during beam injection.
- After stopping electron supply, in the stable phase, plasma relaxes to strongly peaked density profile
 2009 Saitoh et al., Plasma Fusion Res. 4, 054.

Semi rigid-rotating state is spontaneously generated during 12/20 beam injection, measured density and potential profiles are consistent

- When the magnet is not levitated
 - Potential profiles (\bigcirc) are hollow \Rightarrow plasma has strong shear flow

toroidal ExB rotation

- By the levitation of dipole field magnet
 - Potential profiles (•) are close to that of rigid rotation (-)
 - Density (--) and potential measurements are consistent

2010 Saitoh, Yoshida et al., PoP 17, 112111.

The confinement properties strongly depend on the internal potential structure (Proto-RT)

2-d space potential profiles of PEP in Proto-RT

 When the torus electrode is grounded (or weakly negatively biased):

- Potential profile has a peak in a plasma
- Strong toroidal shear flow
- Short confinement time
- When the torus electrode is negatively biased:
 - Flow shear reduced
 - Long stable confinement
 - Instability?
 - Effects of support?

Toward the positron confinement in the dipole field; Common and different properties with electrons

- Basically, similar confinement properties are expected for positrons
- Efficient injection methods should be developed for positrons
 - Inward transport should be externally controlled for weak beam
 cf) Electron injection: Fluctuation-induced spontaneous inward "diffusion"
 - Two methods have been proposed*, should be tested
 - Drift injection scheme with external electric fields*
 - Novel methods by using positronium*
- For the confinement of positrons and electrons simultaneously
 - What will happen in the mixing phase of positrons and electrons?
 Potential control required? Two fluid instabilities?

```
*T. S. Pedersen et al, NJP 14, 035010 (2012).
```

Toward the positron confinement in the dipole field; Common and different properties with electrons

Proof-of-principle experiment in a permanent magnet device 2014 1Q-

Small trap with a neodymium dipole magnet

15/20

Confinement and injection properties

Electron beam exp.

- Efficient injection method development with rift injection with external electric fields

Positron beam exp.

- Efficient injection by using positronium atoms

*T. S. Pedersen et al, NJP 14, 035010 (2012). **C. Hugenschmidt et al, NJP 14, 055027 (2012).

Proposed proof-of-principle experiment

Development of particle injection schemes

- By using positronium reemission process on solid materials* positrons are converted into positronium atoms and freely transported into the confinement region, where they are photo ionized
- By using external electric fields (to be started with electrons)

Schematic of the experiment, including the supported neodymium magnet, $E \times B$ plates for vertical injection, rotating wall for tangential injection, and diagnostics.

*D. B. Cassidy *et al.*, Phys. Rev. Lett. **106**, 133401 (2011); T. S. Pedersen *et al.*, (2012).

**C. Hugenschmidt et al., Nucl. Instrum. Meth. Phys. Res. A 554, 384 (2005).

Injection method 1: vertical injection

- the **E** × **B** drift motion induced by a local crossed electric field
- High injection efficiency when the permanent magnet is biased

(left) Typical positron orbit projected onto the *r*-*z* cross section when the electric field is applied (solid line) and not applied (dot line). Electric field of $\mathbf{E} = 1 \times 10^3$ V/m was applied in the marked region from t=0 to 0.1ms.

(right) Ratios of remaining positrons after injection without **E** (dot line), with the application of **E** (solid line), and when the magnet was also biased (chain line).

Injection method 2: tangential injection

- Rotating E is applied in the azimuthal direction
- RW freq. is synchronized with grad-B/curvature drift freq.
- Efficiency will be tested in a real system

(left) Schematic view of a rotating wall and equipotential contours generated by the segmented electrodes.

(right) Typical positron orbits with (dot line) and without (solid line) the application of synchronized rotating wall.

Injection, confinement, and detection schemes with positrons

- 1. Injection by external fields
- 2. After transported inward, positrons are expected to relax into an equilibrium state in the dipole field.
- 3. For the diagnostics of the injected number of positrons, finally the magnet is negatively biased so that trapped positrons are dumped onto the magnet surface. The g rays from annihilation are counted by a scintillator detector with a pulse height analysis system.

Summary of pure electron plasma experiments in RT-1 and prospects toward the creation of electron-positron plasmas

20/20

- Dipole confinement and experimental results obtained so far
 - Dipole magnetic field is a possible candidate as a trap configuration of electron-positron plasmas (toroidal axi-symmetric trap)
 - Stable confinement of single-component non-neutral plasmas is realized in the axisymmetric dipole field configuration
 - In turbulent phase, adiabatic invariants are not conserved, resulting spontaneous particle diffusion and formation of peaked density profiles
- For the future electron-positron experiments
 - Injection methods of particles are key issues, as well as stable confinement of electrons, positrons, and their mixtures
 - Prior to levitated dipole machine, we plan to conduct small experiment with a permanent magnet, by using both electrons and positrons (drift injection methods and by using positronium)