10th International Workshop on Non-neutral Plasmas 28 August 2012, Greifswald, Germany

Confinement of toroidal non-neutral plasma in magnetic dipole

RT-1: Magnetospheric plasma experiment

Visualized magnetic surfaces

The RT-1 Experiment, GSFS, University of Tokyo H. Saitoh, Z. Yoshida, J. Morikawa, Y. Yano, N. Kasaoka, W. Sakamoto, and T. Nogami

Outline

1. Introduction

- Toroidal non-neutral plasmas in dipole field configuration
- Adiabatic invariants and relation to self-organization process
- 2. Pure electron plasma confinement
 - Injection and stabilization of electrons, trapped as plasma
 - Long confinement, observation of the onset of instability
 - Spatial profiles, inward diffusion and density peaking (pinch)
- 3. Initial experiments on positron injection and trapping
 - Numerical analysis on chaotic behavior of positrons
 - Injection/detection of positrons using small (1MBq) Na-22 source
- 4. Summary and future tasks

<u>1. Introduction:</u> Toroidal confinement of non-neutral 3/20 plasmas in a dipole field configuration

- Toroidal configurations use no plugging electric fields
 - Potentially applicable to high energy charged particles, independent of their electric signs and charges
- Creation of antimatter plasmas, such as positron plasma and electron-positron plasma is one of challenging tasks to be realized in toroidal configurations

- Dipole non-neutral plasma
 - Axi-symmetric magnetic surfaces

As well as scientific applications,

- Self organization of stable state in strongly inhomogeneous field
- Injection across closed surfaces

Adiabatic and non-adiabatic behaviors of particles in dipole field 4/20

- Magnetized particle orbit in dipole field consist of three periodic motions
 Three adiabatic invariants are defined as actions, orbit is integrable
 - magnetic moment $\mu = v_{\perp}^2/B$
 - action integral $J = \int v_{//} ds$
 - magnetic flux

$$\Phi = \int BdS \sim P_{\theta}$$

associated periodic motion

- gyromotion
- bounce along field lines
 - toroidal drift motion

energy canonical angular momentum

• In axisymmetric trap, H and P_{θ} are constant

- 5/20 Adiabatic Invariants are often not conserved due to various reasons
- magnetic moment $\mu = v_{\perp}^2/B$
- action integral $J = \int v_{//} ds$
- magnetic flux

destroyed by large Larmor radius, fast fluctuations

 $\Phi = \int BdS \sim P_{\theta} \qquad \text{trap asymmetry, slow fluctuations}$

➡ Particle motion in a simple dipole field is non-integrable

stable phase (toroidal symmetric)

Conservation of invariants

Particles trapped on magnetic surfaces

Stable confinement

turbulent phase (asymmetric)

• Breakdown of invariants (Φ) Diffusion across magnetic surfaces

Profile reconstruction (relaxation)

What kind of state is generated?

RT-1 (Ring Trap 1) is a dipole field configuration generated by 6/20 a levitated superconducting magnet

HTS Bi-2223 magnet

0.25MA,112kg magnetically levitated, without cooling during 6 hours operation

2010 Yoshida *et al.*, Phys.Rev.Lett. 104, 235004. 2009 Ogawa *et al.*, Plasma Fusion Res. 4, 020.

Toroidal non-neutral plasmas

Self-organization states, inward diffusion, positron trapping

High-β ECH plasma

70% local β, confinement time ~0.5s; fusion-oriented studies

2. Pure electron plasma experiment in RT-1 7/20

Electrons injection from a gun located at edge weak-field region

Visualized magnetic surfaces

Separatrix configuration

- Electrons are injected by a movable electron gun with a LaB₆ cathode
 - Beam injection from edge region → Plasma formation in confinement region
 - After beam injection, cathode heating current is also turned off (to ensure that electron supply is certainly turned off)

Formation phase: plasma has large turbulent-like fluctuations 8/20 during beam injection, which are stabilized after the end of beam supply

- The electron gun was operated from t=0 to 0.1s.
- Plasma has turbulent-like fluctuation component in injection phase, and is stabilized after the end of beam injection.

Semi rigid-rotating state is spontaneously generated during 9/20 beam injection, measured density and potential profiles are consistent

- When the magnet is not levitated
 - Potential profiles (\bigcirc) are hollow \Rightarrow plasma has strong shear flow

toroidal ExB rotation

- By the levitation of dipole field magnet
 - Potential profiles (•) are close to that of rigid rotation (-)
 - Density (--) and potential measurements are consistent

2010 Saitoh, Yoshida et al., PoP 17, 112111.

Stable confinement of PEP for more than 300s is realized, 10/20 trap time comparable to the diffusion time due to neutral collisions

- Long confinement is realized by the magnet levitation
- Instability does not grow, until the end of confinement

 The nonlinear relation
 (τ*P_n≠const.) indicates that
 electron-neutral collisions do
 not simply decide the trap time
 of PEP.

Density profiles: Pinch toward strong field region 11/20 estimated by using a wall probe array in stable confinement phase

- Radial transport to strong field region is realized during beam injection.
- After stopping electron supply, in the stable phase, plasma relaxes to strongly peaked density profile

Test particle simulation suggests that effective radial diffusion is 12/20 realized during beam injection phase

Test particle simulation in random fluctuating electric field

Randum field of 10^{3} V/m $\rightarrow \sim 10$ cm/ms of tansport

- P_{θ} is not conserved due to asymmetry, leading to radial particle transport
- Large electrostatic fluctuations in the relaxation phase can work as a driving force to create relaxed states of dipole plasmas.

*Z. Yoshida, N. Kasaoka, to be published.

• For Boltzmann distribution $f(x, v) = Z^{-1}e^{-\beta H}$, corresponding density is

$$\rho(x) = \int f d^3 v \propto \exp(-\beta \phi),$$

thermal equilibrium, which is constant for charge neutral systems.

• Conservation of invariants, in addition to the total energy *H*, leads to more complex (or realistic) density profiles of dipole plasmas.

Low frequency (diocotron range)

- Fluctuations can easily destroy the symmetry and conservation of $P_{\theta}(\propto \Psi)$.
- Assuming that μ and J are robust invariants, distribution function is

$$f(x,v) = Z^{-1} \exp(-\beta H + \alpha \mu + \gamma J)$$

• It was shown that density per flux tube is constant for neutral limit

$$\mathcal{O}(x) = \int f \frac{2\pi\omega_c d\mu}{m} \frac{dJ}{mL_{//}(\Psi)} dv_d \propto \omega_c / L_{//}(\Psi) \propto r^{-4}$$

Cases with non-neutral plasma is will be conducted*

3. Initial results on positron injection into dipole^{14/20}

 Electron plasma successfully trapped in dipole field, applicable to the confinement of positrons simultaneously, in principle

very weak beam current, especially after moderation

- In a toroidal dipole field configuration,
 - High energy charged particles can be trapped
 - Trapped particles may be cooled by radiation in strong field regions
 - ➡ Possibility of the direct trap of positrons from sources in dipole field
- Issues to be solved for toroidal confinement of positron plasma
 - Reduction of return current to the source
 - Radial inward transport across closed magnetic surfaces

Chaotic orbits of high energy positrons in a dipole field

Temporal evolution of "adiabatic invariants" of positrons in RT-1

- μ and J are not conserved for high energy positron in RT-1
- Φ is generally conserved (due to the symmetry of trap system)

Low energy magnetized particles have four constants of motion

- Orbit is integrable
- Periodic motions

Positrons go back to a source in short times Typically after one bounce

16/20

• High energy particles have only two constants of motion (*E* and Φ)

- Orbit is non-integrable
- Non-periodic motions

Long orbits before hitting the source, long life time

Considerable ratio of positrons from a Na-22 source has chaotic orbits in a dipole field of RT-1

17/20

- Positron orbit is periodic or chaotic (whether μ is conserved or not) depending on kinetic energy and pitch angle
- In RT-1, approximately 70% of positrons from Na-22 source takes chaotic and long orbits (~100 toroidal rotation)
- By applying azimuthal electric field in this phase, positrons may be transported inward to the strong field region.

Detection of injected positrons by a target (preliminary experiment)^{18/20}

Detection of annihilation γ-ray and effects of azjmuthal field

- Approximately 5% of injected positrons hit the target
- Effects of the application of edge field were confirmed

6

- Pure electron plasma confinement in RT-1
 - Long confinement by the levitation of dipole field magnet
 - Spontaneous formation of stable (possibly rigid-rotating) states
 - Approx. 10¹¹ electrons trapped for more than 300s
 - Inward diffusion and peaked relaxed state
- Initial results on positron injection and trapping
 - Chaotic motion and long orbit of high energy positrons
 - Toroidal rotation and effects of E_0 were confirmed
- Future tasks
 - Injection of positrons from strong field regions, RF application
 - Development of efficient positron injection method into dipole field