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Confinement of toroidal non-neutral plasma
iIn magnetic dipole

RT-1: Magnetospheric plasma experiment Visualized magnetic surfaces
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1. Introduction
* Toroidal non-neutral plasmas in dipole field configuration
* Adiabatic invariants and relation to self-organization process

2. Pure electron plasma confinement

* |Injection and stabilization of electrons, trapped as plasma
* Long confinement, observation of the onset of instability
* Spatial profiles, inward diffusion and density peaking (pinch)

3. Initial experiments on positron injection and trapping

* Numerical analysis on chaotic behavior of positrons
* |Injection/detection of positrons using small (1MBq) Na-22 source

4. Summary and future tasks



1. Introduction: Toroidal confinement of non-neutral 3/20

plasmas in a dipole field configuration

* Toroidal configurations use no plugging electric fields

= Potentially applicable to high energy charged particles,
independent of their electric signs and charges

* Creation of antimatter plasmas, such as positron plasma and
electron-positron plasma is one of challenging tasks to be
realized in toroidal configurations

magnetospheric plasma

e N * Dipole non-neutral plasma

a ' » Axi-symmetric magnetic surfaces
\ ' ' As well as scientific applications,

« Self organization of stable state
in strongly inhomogeneous field

linear plasma trap

* Injection across closed surfaces



Adiabatic and non-adiabatic behaviors of particles in dipole field ~ 4/20

* Magnetized particle orbit in dipole field consist of three periodic motions
= Three adiabatic invariants are defined as actions, orbit is integrable

associated periodic motion

* magnetic moment u= VLZ/B gyromotion
» action integral J = jv,,ds bounce along field lines
« magnetic flux D = _[ BdS ~ P, toroidal drift motion

energy  canonical angular momentum
* In axisymmetric trap, H and Py are constant

Toroidal drift
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» Adiabatic Invariants are often not conserved due to various reasons  °/20

destroyed by

. 2
* magnetic moment =V, /B . _
large Larmor radius, fast fluctuations

- action integral J = jv,,ds
* magnetic flux D= I BdS ~ P, trap asymmetry, slow fluctuations

= Particle motion in a simple dipole field is non-integrable

stable phase (toroidal symmetric) turbulent phase (asymmetric)
#« Conservation of invariants * Breakdown of invariants (®)
Particles trapped on magnetic surfaces Diffusion across magnetic surfaces
Stable confinement Profile reconstruction (relaxation)
What kind of state is generated?
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RT-1 (Ring Trap 1) is a dipole field configuration generated by 6/20
a levitated superconducting magnet
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¢ Toroidal non-neutral plasmas
Self-organization states, inward diffusion, positron trapping

70% local B, confinement time ~0.5s; fusion-oriented studies



2. Pure electron plasma experiment in RT-1 7120

Electrons injection from a gun located at edge weak-field region
Lifting magnet
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Separatrix configuration

¢ Electrons are injected by a movable electron gun with a LaB, cathode

» Beam injection from edge region=» Plasma formation in confinement region

* After beam injection, cathode heating current is also turned off
(to ensure that electron supply is certainly turned off)



Formation phase: plasma has large turbulent-like fluctuations

8/20

during beam injection, which are stabilized after the end of beam supply

Floating wall probe measurement
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* The electron gun was operated from t=0 to 0.1s.

* Plasma has turbulent-like fluctuation component in injection phase,
and is stabilized after the end of beam injection.



Semi rigid-rotating state is spontaneously generated during 9/20
beam injection, measured density and potential profiles are consistent

(1D data, assuming density is
constant on magnetic surfaces)
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* \When the magnet is not levitated

 Potential profiles (O) are hollow =+ plasma has strong shear flow

toroidal ExB rotation
* By the levitation of dipole field magnet

* Potential profiles (®) are close to that of rigid rotation (—)

* Density (--) and potential measurements are consistent
2010 Saitoh, Yoshida et al., PoP 17, 112111.



Stable confinement of PEP for more than 300s is realized, 10/20
trap time comparable to the diffusion time due to neutral collisions

Floating wall probe measurement
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Density profiles: Pinch toward strong field region
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estimated by using a wall probe array in stable confinement phase
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Density profiles of PEP
(a) during beam injection,
(b) after stabilization,

(c) before confinement ended.

 Radial transport to strong field region is realized during beam injection.

« After stopping electron supply, in the stable phase, plasma relaxes to
strongly peaked density profile



Test particle simulation suggests that effective radial diffusion is
realized during beam injection phase

12/20

* Test particle simulation in random fluctuating electric field
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* P, is not conserved due to asymmetry, leading to radial particle transport

« Large electrostatic fluctuations in the relaxation phase can work as a

driving force to create relaxed states of dipole plasmas.



Relaxed states governed by adiabatic invariants 13/20

*Z.Yoshida, N. Kasaoka, to be published.
« For Boltzmann distribution f(x,v)=Z "¢ corresponding density is

p(x) = [ fd*v occexp(- 5g)
thermal equilibrium, which is constant for charge neutral systems.
« Conservation of invariants, in addition to the total energy H, leads to

more complex (or realistic) density profiles of dipole plasmas.

Low frequency (diocotron range)
* Fluctuations can easily destroy the symmetry and conservation of Pg («<'V).

« Assuming that p and J are robust invariants, distribution function is
f(x,v)=Z"exp(—H +au+x)
* It was shown that density per flux tube is constant for neutral limit

2rew,dy dJ
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» Cases with non-neutral plasma is will be conducted®
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.. : .. : : : 14/20
3. Initial results on positron injection into dipole

* Electron plasma successfully trapped in dipole field, applicable to the
confinement of positrons simultaneously, in principle
very weak beam current, especially after moderation

* In a toroidal dipole field configuration,
» High energy charged particles can be trapped
 Trapped particles may be cooled by radiation in strong field regions

= Possibility of the direct trap of positrons from sources in dipole field

* |ssues to be solved for toroidal confinement of positron plasma

* Reduction of return current to the source

» Radial inward transport across closed magnetic surfaces



Chaotic orbits of high energy positrons in a dipole field 15/20

* Temporal evolution of “adiabatic invariants” of positrons in RT-1
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* uand J are not conserved for high energy positron in RT-1
« ®@ is generally conserved (due to the symmetry of trap system)



* Low energy magnetized particles have four constants of motion 16/20

* Orbit is integrable

* Periodic motions

Positrons go back to a source
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* High energy particles have only two constants of motion (E and ®)
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Considerable ratio of positrons from a Na-22 source has

chaotic orbits in a dipole field of RT-1

17/20
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* Positron orbit is periodic or chaotic (whether u is conserved or not)
depending on kinetic energy and pitch angle

* In RT-1, approximately 70% of positrons from Na-22 source takes chaotic
and long orbits (~100 toroidal rotation)

* By applying azimuthal electric field in this phase, positrons may be
transported inward to the strong field region.



Detection of injected positrons by a target (preliminary experiment)18/20
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Detection of annihilation y-ray and effects of azimuthal field
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* Approximately 5

n/

% of injected positrons

hit the target

* Effects of the application of edge field were confirmed
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Summary 20120

* Pure electron plasma confinement in RT-1

* Long confinement by the levitation of dipole field magnet

* Spontaneous formation of stable (possibly rigid-rotating) states
* Approx. 10" electrons trapped for more than 300s

* [nward diffusion and peaked relaxed state

* |nitial results on positron injection and trapping

* Chaotic motion and long orbit of high energy positrons
» Toroidal rotation and effects of E,were confirmed

e Future tasks

* Injection of positrons from strong field regions, RF application
* Development of efficient positron injection method into dipole field



