GI3.00005 52nd APS DPP, 9 November 2010, Chicago

Formation of High-beta Plasma and Stable Confinement of Toroidal Electron Plasma in RT-1

H. Saitoh, RT-1 Experiment, University of Tokyo, Kashiwa, Chiba, JAPAN

RT-1: Magnetospheric plasma experiment

Magnetospheric plasma confined in RT-1

The RT-1 Experiment:

Z. Yoshida, Y. Ogawa, M. Furukawa, J. Morikawa, Y. Yano, Y. Kawai, H. Saitoh, K. Harima, Y. Kawazura, Y. Kaneko, S. Emoto, M. Kobayashi, T. Sugiura, G. Vogel, H. Mikami, S. Iizuka

> Transdisciplinary Sciences, GSFS

Levitated dipole system generates "Laboratory magnetosphere" 2/18 with strongly inhomogeneous magnetic field

- RT-1: magnetospheric configuration generated by levitated dipole magnet*1
- Many interesting and fundamental properties of plasma can be investigated in its strongly inhomogeneous field
 - High- β plasma in Jupiter's magnetosphere
 - compressibility of flux tubes*2
 - effects of flow and dynamic pressure*3

→ Advanced fusion using D-D and D-³He

- Inward diffusion and self-organization of stable vortex structures
- → Non-neutral plasma including antimatters*4
- Relation to Space plasma physics: Whistler waves, chorus emission, particle acceleration, substorms, etc.

Magnetospheric plasma in RT-1

1. RT-1: 2010 Yoshida *et al.*, PRL 104, 235004. LDX: 2010 Boxer *et al.*, Nat. Phys. 6, 207.

- 2. 1987 Hasegawa, CPPCF 11, 147.
- 3. 1998 Mahajan Yoshida, PRL 81, 4863; 2002 Yoshida Mahajan, PRL 88, 095001.

4. RT-1: 1999 Yoshida *et al.*, in *NNP Phys. III*. CNT: 2002 Pedersen Boozer, PRL 88, 205002. LNT II: 2009 Stoneking *et al.*, PoP 16, 0557708.

RT-1 has succeeded to generate high- β ECH plasma and to stably confine toroidal non-neutral (electron) plasma

• HTS Bi-2223 magnet 0.25MA,112kg magnetically levitated

3/18

- Microwaves
 8.2GHz (25kW) and
 2.45GHz (20kW)
- Electron gun LaB₆ cathode

Magnetospheric plasma Experiment, RT-1

2009 Ogawa et al., Plasma Fusion Res. 4, 020.

Toroidal non-neutral (pure electron) plasma

300s long confinement, rigid-rotating steady state, inward diffusion

High-β ECH plasma Yano et al., Wednesday Morning NP9.39
 70% local β, confinement time ~0.5s, peaked density profile

Section I: Confinement of pure electron plasma

- Confinement time more than 300s for toroidal electron plasma
- Observations consistent with self-organization of rigid-rotating equilibrium
- Evidence for fluctuation induced radial transport through violation of third adiabatic invariants

2010 Yoshida *et al.*, PRL 104, 235004; 2010 Saitoh *et al.*, PoP in press. 2009 Saitoh *et al.*, Plasma Fusion Res. 4, 054.

Magnetospheric configuration enables stable confinement and novel studies of toroidal non-neutral plasmas^{*1}

Visualized electron beam orbits agree with shape of magnetic surfaces.

- 1. 1999 Yoshida *et al.*, in *NNP Phys. III*. 2002 Pedersen Boozer, PRL 88, 205002. 2002 Stoneking *et al.*, PoP 9, 766.
- 2. 2010 Yoshida *et al.*, PRL 104, 235004. 2005 Saitoh *et al.*, PRL 92, 255005.

• Toroidal configuration can trap plasmas with arbitrary non-neutrarity

5/18

➡ potentially applicable for antimatter plasmas

Magnetospheric toroidal NNP*2

 Axisymmetric trap: conservation of canonical angular momentum or 3rd adiabatic invariant

$$P_{\theta} = mrv_{\theta} + qrA_{\theta} \sim qrA_{\theta} \qquad K = \int P_{\theta}ds \sim q\Phi$$

 In strong symmetric fields, magnetized particles cannot cross magnetic surfaces

$$P_{\theta} = \frac{\partial L}{\partial \dot{\theta}} = mr^{2}\dot{\theta} + qrA_{\theta} = const.$$
$$L = \frac{mv^{2}}{2} + q\mathbf{v} \cdot \mathbf{A} - q\phi$$
$$d \le \left| mr\dot{\theta} / qB_{p} \right|$$

Excellent confinement properties expected for plasmas with arbitrary non-neutrarlity

Plasma formation is realized through inward diffusion due to fluctuation-induced asymmetry during beam injection

Topview of RT-1 and beam injection

• Particle penetration into closed surfaces

- During beam injection, plasma has fluctuations that induces asymmetry of trap system
 - \rightarrow Temporal violation of P_{θ} and K conservations

6/18

- Effective radial diffusion of particles
- In RT-1, small electrostatic fluctuations cause effective radial diffusion of particles

Randum field of 10^{3} V/m \rightarrow ~10cm/ms of tansport

 Particles can be transported radially until stable equilibrium state is spontaneously generated

Plasma has large fluctuation during beam injection, and is stably confined after injection ends as fluctuation is stabilized

7/18

Spontaneous formation of rigid-rotating equilibrium state 1: 8/18 Density and potential profiles are consistent with semi rigid motion

Radial density profile and space potential profiles During beam injection. V_{acc} =500V.

- Profiles during beam injection are consistent with semi-rigid-rotation
 - Coil levitation results spontaneous charge-up of the coil case
 - flow shear is drastically reduced, and plasma is stabilized
 - Measured and calculated (from density profile) potential profiles are consistent

Spontaneous formation of rigid-rotating equilibrium state 2: Fluctuations indicate toroidal rotation with constant frequency

9/18

- Electrostatic fluctuation has phase difference in only toroidal direction (n=1).
- Fluctuation frequency is constant at different radial positions, suggesting rigidrotating equilibrium of toroidal magnetospheric plasma

Observation of inward particle diffusion 1: Plasma diffuses inward to strong field region

Plasma boundaries and image charge profiles

• Profile measurement by wall probes*1

10/18

- Non-destructive diagnostics is needed for toroidal NNP in closed surfaces
- Spatial profiles can be estimated using multiple local electric field values

$$E_r = -\int I_i / \varepsilon_0 \, dt$$

• Temporal inward diffusion of particles

- Inward diffusion and density increase
 - 1. 2009 Saitoh et al., Plasma Fusion Res. 4, 054

Observation of inward particle diffusion 2: 11/18 Space potential exceeds initial electron energy in strong field region

Radial spatial potential profiles with different radial positions of gun. V_{acc} =500V.

- Potential profiles indicate radial transport and acceleration of particles
 - At r=r_{gun}, space potential agrees well with V_{acc}
 - Space potential at r<r_{gun} (in the stronger field region) is lower than V_{acc}.
- Some particles are accelerated and radially transported inward, while thermal relaxation time (~400s) is much longer than beam injection time.

Observation of inward particle diffusion 3: Coincident instability onset and radial particle transport

Onset of instability and particle flux at different magnetic surface

- Particle flux measurements show fluctuation-induced radial transport
 - Radial particle transport and onset of instability are simultaneously observed
- ✓ Fluctuation-induced transport by violation of symmetry and third invariant
- ✓ Spontaneous generation of rigid-rotating stable vortex
 - Effective particle injection and confinement of toroial NNP

Section II: High-beta ECH plasma formation

- Stable formation of high-beta plasma: local beta~70%
- Long confinement time of hot electron plasma
- Observation of peaked density profiles in strong field regions

2006 Yoshida *et al.*, Plasma Fusion Res. 1, 006.
2008 Yoshida *et al.*, 22nd IAEA Fusion Energy Conference EX/P5-28.
2009 Yano *et al.*, Plasma Fusion Res. 4, 039.
2010 Saitoh *et al.*, 23rd IAEA Fusion Energy Conference EXC/9-4Rb.

RT-1 has succeeded to produce high beta (local beta~70%) hot electron plasma by ECH up to 45kW of RF injection

Diamagnetic signal (with calculated maximum local β) and line averaged density

- Optimization of formation conditions and geomagnetic field compensation resulted drastic improvements of plasma properties^{*1}
- Parameter ranges designated as high-density, high- β , and unstable states, according to the filling neutral gas pressure
- High- β (density $n_e > n_{cutoff}$) plasma is generated, $\Delta \Phi = 4.0$ mWb local $\beta \sim 70\%$ (2d Grad-Shafranov analysis and x-ray measurements are consistent)

1. 2009 Yano et al., Plasma Fusion Res. 4, 039.

14/18

High β ECH plasma is generated with optimized formation conditions, avoiding the onset of instabilities

Typical waveforms of high- β plasma and electromagnetic fluctuations in RT-1

- High- β state is characterized by large stored energy, strong x-ray, and depression of visible light strength and fluctuations: **hot electron plasma**
- In phase (i), thin (~10¹⁵m⁻³) hot plasma has large electromagnetic fluctuations, which are stabilized after higher density formation in phase (iii)
 - Effects of hot electrons are possible reasons for the onset of instability*1

1. 2006 Garnier et al., PoP 13, 056111.

15/18

Electrons of high beta plasma consists of majority of hot (up to ~50keV) component, and τ_p ~0.5s

16/18

Decay of line density and estimated ratio of hot-electron component and confinement time

- Electrons consists of majority (~60%) of hot (~50keV) and cold (~10eV) populations
- Confinement time of hot electron component is $\tau_p=0.5s$ cf) $\tau_{Bohm} \sim 1.4 \mu s$
- Energy confinement time τ_E is comparable to τ_p , suggesting that temporal variation of T_e is relatively small after RF stopped (consistent with x-ray measurements)

Plasma has peaked density profiles in strong field region when superconducting magnet is levitated

17/18

Radial density profiles [coefficient a of $n(r)=n_0r^a$] with and without coil levitation

- Density profiles were estimated by multi-cord measurements of interferometer, assuming n(r)=n₀r^a on z=0 plane and density is a function of magnetic surface
- When the superconducting coil is levitated, plasma has peaked density profiles
- This result is similar to previous report in LDX^{*1} and consistent with Hasegawa's prediction^{*2} that turbulent-induced diffusion occurs until plasma density per flux tube becomes constant: $\partial/\partial \psi \iint f(\mu, J, \psi) d\mu dJ = 0$

- 18/18
- High-β ECH plasma Yano et al., Wednesday Morning Poster NP9.39
 - local β =70%, hot component is majority of electron populations, τ_p = 0.5s
 - Plasma has peaked density profiles as predicted by Hasegawa
 - High- β state is realized by suppressing **electromagnetic fluctuations**
- Toroidal magnetospheric non-neutral plasma
 - Pure electron plasma trapped for 320s, comparable to classical diffusion time
 - Spatial structures and fluctuation properties suggest self-organization of toroidal rigid-rotating equilibrium state
 - Inward diffusion and density increase in strong field region were non-destructively observed

Future tasks

- High- β plasma: ion heating, investigation of Hall effects, β limit
- NNP: applications for trapping **antimatter plasmas** (e⁺, e⁺-e⁻)

Backup Material

including preliminary data

Soft x-ray imaging of hot electron plasma

Visible light image from port 1 and image area of x-ray CCD camera.

Soft x-ray images observed from (a) port 1, (b) port 1 with insertion of target tube At different radial positions, and (c) port2. (1) 2.45GHz and (b) 8.2GHz ECH.

- 2.45GHz: hot electrons fill approximately entire region in the image circle
 8.2GHz: x-ray emitting region localized near the coil, some lost on coil surface
 Relatively large diamagnetic signal observed for 2.45GHz rather than 8.2GHz.
- Coil support structure is the main loss channel of hot electrons without levitation.

High beta plasma with optimized neutral gas pressure

Waveforms of ECH plasma in RT-1 with (a) $P_{H_2}=4.5 \times 10^{-2} Pa$ (b) $1.3 \times 10^{-3} Pa$.

- By optimizing neutral gas pressure, high- β plasma is generated.
- Plasma pressure is mainly resulted from hot component of electrons (~50keV).

High- β discharge and stabilization of fluctuation

Temperature and density of hot electrons in variation of filled neutral gas, and hot electron pressure $P_h = n_h T_h$ in variation of diamagnetic signal.

- > High- β Plasma pressure is mainly resulted from hot electrons.
- > Plasma has hot component electrons of $T_h \sim 50$ keV.
- Strong correlation between $P_h = n_h T_h$ and diamagnetism suggests hot component is the main component of electrons in high- β cases.

Hot electron imaging by x-ray CCD camera

·1024×1024 pixel (13×13mm), 16bit dynamic range ·Be window (100um), collimator, tantalum pinhole

Soft x-ray (photon counting mode of CCD camera)

Preliminary results without coil levitation

- Pulse height analysis of photon energies with CCD
- Impurity lines are used for energy calibration
- ➤T_e is approximately constant in the image circle...
- Experiment with coil levitation is future task

* Y. Liang et. al., Rev. Sci. Instrum. 72, 717 (2001), H. Saitoh et. al., PFR 4, 050 (2009).

Grad-Shafranov equilibrium analysis

Energy confinement time and β values

Plasma pressure (diamagnetic signal) and energy confinement time

Hot electron population reaches ~30% by reducing neutral gas pressure.

- Energy confinement time estimated from from stored energy and injected RF power is τ_{e1}~60ms.
- τ_{e1} is shorter than that estimated from magnetic measurement (diamag-decay time) of τ_{e2}~500ms.
- The stored energy is typically higher for 2.45GHz ECH